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a b s t r a c t

A complete continuum thermoelastic theory for large deformation of crystals of arbitrary
symmetry is developed. The theory incorporates as a fundamental state variable in the
thermodynamic potentials what is termed an Eulerian strain tensor (in material
coordinates) constructed from the inverse of the deformation gradient. Thermodynamic
identities and relationships among Eulerian and the usual Lagrangian material coefficients
are derived, significantly extending previous literature that focused on materials with
cubic or hexagonal symmetry and hydrostatic loading conditions. Analytical solutions for
homogeneous deformations of ideal cubic crystals are studied over a prescribed range of
elastic coefficients; stress states and intrinsic stability measures are compared. For
realistic coefficients, Eulerian theory is shown to predict more physically realistic behavior
than Lagrangian theory under large compression and shear. Analytical solutions for shock
compression of anisotropic single crystals are derived for internal energy functions quartic
in Lagrangian or Eulerian strain and linear in entropy; results are analyzed for quartz,
sapphire, and diamond. When elastic constants of up to order four are included, both
Lagrangian and Eulerian theories are capable of matching Hugoniot data. When only the
second-order elastic constant is known, an alternative theory incorporating a mixed
Eulerian–Lagrangian strain tensor provides a reasonable approximation of experimental
data.

Published by Elsevier Ltd.
1. Introduction

Nonlinear continuum thermoelasticity provides a physical description of behavior of crystalline solids in the study of
acoustic and shock waves, ballistic impact, and high-pressure geophysics problems. For extremely high pressure events,
much work has focused on development of scalar equations of state, e.g., scalar relations among pressure, volume, entropy,
and temperature and associated thermodynamic (energy) potentials. For ductile substances (e.g., many metals) and those
that fracture easily, such a description is sufficient in many cases wherein the deviatoric stress (i.e., shear components) are
restricted in magnitude due to plastic slip, twinning, or fracture that limit shear strength to a small fraction of the applied
pressure. However, some crystalline materials such as ceramics and hard minerals may retain significant shear strength at
finite strain under high pressure loading, e.g., as observed in plate impact or explosive loading (Wackerle, 1962; Fowles,
1967; Graham and Brooks, 1971; Kondo and Ahrens, 1983; Lang and Gupta, 2010). In these cases, a three-dimensional tensor
theory of nonlinear thermoelasticity is required. Furthermore, apart from exceptional cases such as hydrostatic loading of
cubic crystals, material anisotropy must be addressed in descriptions of single crystal behavior.
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The present work distinguishes among theories based on what are labeled Lagrangian and Eulerian finite strain
measures. Let x denote the time-dependent spatial position of a material element located at point X in the undeformed
body. The deformation gradient is F ¼∇0x, where ∇0 is the material gradient operator and x¼ xðX; tÞ. The inverse
deformation gradient is F−1 ¼∇X, with ∇ the spatial gradient and the inverse motion X ¼ Xðx; tÞ. The ratio of current to
initial volume of the element is J ¼ V=V0 ¼ det F; inverting this gives J−1 ¼ V0=V ¼ det F−1. A theory whose independent
state variable entering the thermodynamic potentials is constructed from stretch raised to some positive power/exponent is
labeled here as “Lagrangian”; a theory utilizing stretch raised to some negative power/exponent is labeled here as
“Eulerian”. This terminology will be explained in more detail later by example.

Let a superscript T denote transposition. Conventional nonlinear elasticity for crystalline solids (Wallace, 1972; Thurston,
1974; Clayton, 2011a) incorporates the Lagrangian strain measure EðX; tÞ ¼ 1

2 ðFTF−1Þ, often called the Green–St. Venant
tensor or simply the Green strain, in the thermodynamic potentials. This approach, when elastic constants of up to third
order are included, has been successful for modeling many crystalline solids under compression V=V0≳0:95, including
ceramics and pure minerals (Winey and Gupta, 2004; Clayton, 2009, 2011b; Foulk and Vogler, 2010; Clayton et al., 2012),
metals (Clayton, 2005a,b, 2006; Vogler and Clayton, 2008), and locally heterogeneous geologic materials (Clayton, 2008,
2010a), but its accuracy degrades at larger compressions (smaller volume ratios) possible in shock loading or ballistic events.
In such cases, elastic constants of order four and higher, difficult to measure and unknown for most anisotropic crystals, may
be needed (Thurston, 1974).

For hydrostatic compression of cubic crystals or isotropic polycrystalline solids, it has been shown (Birch, 1978; Jeanloz,
1989) that pressure–volume equations of state incorporating Eulerian volumetric strain measures, i.e., a series of term(s)
consisting of V0=V raised to some positive exponent, are almost always more accurate than those incorporating Lagrangian
measures [i.e., dominant term(s) consisting of V=V0 raised to some positive exponent] when each representation contains
the same number of bulk elastic constants. A canonical example of an Eulerian description is the Birch–Murnaghan EOS
(Birch, 1947, 1978; Murnaghan, 1951) which often demonstrates high accuracy even when truncated at second order and at
third order is often almost indistinguishable from the linear shock velocity–particle velocity relation that applies
exceptionally well for many shock-compressed solids (Jeanloz, 1989).

The Birch–Murnaghan EOS is by definition restricted to pressure–volume space. A complete description for all stress
states requires a tensor formulation. For single crystals, as well as textured polycrystals and composites, this formulation
must account for anisotropy. A mathematically and thermodynamically consistent way to construct such a description is to
assign scalar thermodynamic potentials (e.g., free energy or internal energy) that are irreducible functions of requisite
invariants of an objective finite strain tensor for the given material's symmetry. By conjecture, extending arguments for
Eulerian equations of state to arbitrary stress states and anisotropic solids, it is proposed that thermodynamic potentials
incorporating an Eulerian strain measure, as defined above, will provide analogous advantages in six-dimensional stress–
strain space as Eulerian equations of state provide in pressure–volume space.1 For example, if the analogy holds as
anticipated, Eulerian theory with elastic constants of up to order two might provide comparable accuracy as Lagrangian
theory with constants of up to order three. Higher-order elastic constants are difficult to measure–standard tests include
wave speed measurements in stressed crystals (Thurston, 1974; Thurston et al., 1966; Hankey and Schuele, 1970) or costly
shock compression experiments in multiple directions (Graham and Brooks, 1971; Graham, 1972a, 1972b)–and have been
reported for few low-symmetry materials. Third-order constants can also be predicted via first principles calculations (Zhao
et al., 2007). Therefore, any theory that alleviates the need for measurements or atomic calculations of elastic constants
above a certain order would be valuable.

The present paper develops a theory that incorporates Eulerian finite strain tensor Dðx; tÞ ¼ 1
2 ð1−F−1F−TÞ, suggested (but

not implemented) for describing elasticity of anisotropic solids by Murnaghan2 and perhaps first implemented in
calculations (of stressed cubic crystals) by Thomsen (1972). Because D has components referred to the reference coordinate
system, it is invariant under spatial rotations (Davies, 1973), and can be used in elastic potentials for anisotropic bodies.
Because D is symmetric and referred to material coordinates, functional forms of thermoelastic potentials for anisotropic
materials expressed in terms of D will be the same as those in terms of E (Thomsen, 1972; Weaver, 1976). For example,
elastic constant tensors of all orders will have the same symmetries, though magnitudes of higher-order constants will differ
between the two theories. Transformation formulae can be derived relating material constants of the two theories (Weaver,
1976; Perrin and Delannoy, 1978), obviating the need for additional experiments or quantum calculations if Lagrangian
constants have already been obtained.

Further clarification of terms “Lagrangian” and “Eulerian” is in order. In this paper, a “Lagrangian” strain refers to a tensor
depending on principal stretch ratios raised to some positive exponent, while an “Eulerian” strain refers to a tensor
depending on principal stretch ratios raised to some negative exponent. This is consistent with terminology adopted in the
physics and chemistry literature (Thomsen, 1972; Weaver, 1976; Perrin and Delannoy, 1978; Davies, 1974; Nielsen, 1986).
According to this scheme D is labeled “Eulerian” in the sense that it is constructed from the inverse deformation gradient
F−1ðx; tÞ (precisely, right stretch U raised to the −2 power) and its field is implicitly a function of spatial coordinates x,
1 This conjecture is later shown to be true for ideal cubic solids with an ambient pressure derivative of bulk modulus B′
0≈4, but not necessarily true for

shock compression of highly anisotropic single crystals.
2 Murnaghan (1937, p. 257) proposed a strain energy depending on deformation measure j¼ 1−2D.
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even though indices of D are referred to a material coordinate system (associated with X). In contrast, according to
conventions often used in continuum mechanics literature, a tensor is said to be “Lagrangian” if it is referred to material/
initial coordinates and “Eulerian” if referred to spatial/current coordinates. According to this scheme D would be Lagrangian,
while E would be Lagrangian in either scheme (right stretch U raised to the þ2 power, and expressed in material
coordinates). Almansi strain eðx; tÞ ¼ 1

2 ð1−F−TF−1Þ entering Murnaghan's (1937) theory for isotropic solids would be Eulerian
according to either scheme. The negative of tensor D has been referred to elsewhere as Piola strain (Haupt, 2000).

Recent work (Clayton and Bliss, submitted for publication) has demonstrated that under finite shear, isotropic E�based
Lagrangian theory is prone to intrinsic instability in terms of attainment of null eigenvalue(s) of an incremental stiffness
matrix (Wang et al., 1993; Morris and Krenn, 2000) with increasing magnitude of third-order elastic constants, regardless of
their sign. This is often referred to as a “Born instability” (Thomsen, 1972; Born, 1940), though different elastic stiffness
tensors for perfect crystals have been suggested as most appropriate depending on boundary conditions (Hill, 1975; Hill and
Milstein, 1977). While certain crystals such as quartz (Gregoryanz et al., 2000) and boron carbide (Clayton, 2012, 2013) can
demonstrate true physical instabilities, in a model such instabilities should result from material physics rather than
pathologies associated with extrapolation of a strain-based theory to large deformations outside the domain for which
elastic properties have been measured.

Benefits of using Eulerian strain measures for nonlinear elasticity of isotropic materials were extolled by Murnaghan
(1937) in the 1930s and were demonstrated for cubic crystals under hydrostatic stress by Birch (1947). Thermal effects were
considered later in a D�based Eulerian formulation (Davies, 1974), and a mechanical theory for several non-cubic crystals
incorporating D was initiated and exercised in the late 1970s (Weaver, 1976; Perrin and Delannoy, 1978). With the exception
of the early works of Murnaghan and Birch, these Eulerian treatments remain obscure, and theoretical developments and
comparisons with experiment are limited to hydrostatic pressure loading. Nonetheless, the Eulerian framework has
demonstrated superior accuracy over Lagrangian theory for predicting the hydrostatic isothermal response of a few
anisotropic crystals (Weaver, 1976; Perrin and Delannoy, 1978). Despite such promise, Eulerian D�based thermoelasticity
theory has not been completely developed for crystals of arbitrary anisotropy, and until now has been untested for general
non-hydrostatic stress states. In the present work, the theory is fully developed and is applied to several loading protocols,
including adiabatic uniaxial strain conditions (involving simultaneous shear and compression) characteristic of shock-wave
problems (Thurston, 1974; Perrin and Delannoy-Coutris, 1983).

The remainder of this paper is structured as follows. Derivations are presented in parallel for Eulerian and Lagrangian
theories in Section 2, including governing equations, thermodynamic identities, intrinsic stability criteria, and material
coefficients. Analytical solutions for homogeneous deformations of a cubic crystal are examined in Section 3. These
solutions, which apparently have not been given elsewhere, apply for cubic crystals with fully anisotropic second-order
elasticity but symmetrized anharmonicity characterized by a single third-order constant. A new solution is derived in
Section 4 for shock compression of a single crystal of arbitrary symmetry described by fourth-order Eulerian theory.
Predictions of this solution are compared with those of the Lagrangian solution for three materials which remain elastic
under large uniaxial compression: quartz, sapphire, and diamond. Conclusions are given in Section 5. Appendices contain
supporting material on kinematics and thermomechanics. Standard notation of continuum field theory is used: vectors and
tensors are generally written in bold italic; when indicial notation is used, components of vectors and tensors are referred to
a Cartesian frame of reference and are written in plain italic, with summation over repeated indices.
2. Theory

2.1. Nonlinear continuum mechanics of hyperelastic solids

Spatial coordinates are related to reference coordinates by the motion x¼ xðX; tÞ. The deformation gradient F and its
determinant are3

F ¼∇0x ðFiJ ¼ ∂JxiÞ; J ¼ det F40: ð2:1Þ

Let PðX; tÞ and rðx; tÞ denote, respectively, first Piola–Kirchhoff and Cauchy stress:

P ¼ JrF−T; PiJ ¼ JsikF
−1
Jk ¼ ρ0

ρ
sik∂kXJ : ð2:2Þ

Let _ð � Þ ¼ ∂ð � Þ=∂tjX denote the material time derivative and υ particle velocity. Balance of linear momentum in the absence of
body force and balance of angular momentum are

∇0 � P ¼ ρ0 _υ; ∂JPiJ ¼ ρ0 €xi; ð2:3Þ

PFT ¼ FPT; PiJFkJ ¼ PkJFiJ : ð2:4Þ
3 See Appendix A for a thorough discussion of kinematics.
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Let Ψ denote Helmoltz free energy per unit initial volume, and let θ and η denote absolute temperature and entropy per
initial volume. Internal energy density U obeys

U ¼Ψ þ θη: ð2:5Þ
The following usual functional forms are assumed for homogeneous solids:

Ψ ¼ Ψ ðF; θÞ; U ¼UðF; ηÞ: ð2:6Þ
Dependence on F will be replaced later by dependence on symmetric strain measures that respect rotational invariance of
the thermodynamic potentials.

The local balance of energy, in the absence of scalar heat sources, is

_U ¼ P : _F−∇0 � Q ; _U ¼ PiJ∂J _xi−∂JQ J ; ð2:7Þ
with Q the referential heat flux vector. The local entropy production inequality is

_η þ∇0 � ðθ−1Q Þ≥0; θ _η þ ∂JQ J−θ−1QJ∂Jθ≥0: ð2:8Þ
Using (2.5) and (2.7) in (2.8),

P : _F−η _θ− _Ψ−θ−1Q � ∇0θ≥0: ð2:9Þ
Substituting from the first of (2.6),

ðP−∂Ψ=∂FÞ : _F−ðηþ ∂Ψ=∂θÞ _θ−Q � ∇0θ≥0; ð2:10Þ
from which the usual constitutive equations of hyperelasticity can be deduced:

P ¼ ∂Ψ=∂F; η¼−∂Ψ=∂θ: ð2:11Þ
From (2.5), (2.6) and letting θ¼ θðF ; ηÞ,

∂U
∂F

¼ ∂Ψ
∂F

þ ∂Ψ
∂θ

∂θ
∂F

þ η
∂θ
∂F

;
∂U
∂η

¼ ∂Ψ
∂θ

∂θ
∂η

þ η
∂θ
∂η

þ θ: ð2:12Þ

Then, from the second of (2.11), it follows that

P ¼ ∂U=∂F; θ¼ ∂U=∂η: ð2:13Þ

2.2. Lagrangian and Eulerian variables

Lagrangian Green strain EðX; tÞ is defined as

E¼ 1
2 ðFTF−1Þ; EIJ ¼ 1

2ð∂Ixk∂Jxk−δIJÞ: ð2:14Þ
Eulerian strain Dðx; tÞ is defined as

D¼ 1
2 ð1−F−1F−TÞ; DIJ ¼ 1

2ðδIJ−∂kXI∂kXJÞ: ð2:15Þ
Considered in parallel are two thermoelastic formulations more specific than (2.6), one based on E and termed “Lagrangian”,
the other based on D and termed “Eulerian”:

Ψ ¼ Ψ ½EðFÞ; θ�; U ¼U ½EðFÞ; ηÞ�; ð2:16Þ

Ψ ¼ Ψ̂ ½DðFÞ; θ�; U ¼ Û ½DðFÞ; ηÞ�: ð2:17Þ
These thermodynamic potentials are all invariant under spatial rotations since both E and D are referred to the material
coordinate system. First Piola–Kirchhoff stress in the Lagrangian description is, from (2.11), (2.13), and (A.8),

PkL ¼
∂Ψ
∂EIJ

∂EIJ
∂FkL

¼ FkJ
∂Ψ
∂EJL

¼ FkJ
∂U
∂EJL

¼ FkJSJL: ð2:18Þ

Second Piola–Kirchhoff stress is

SJL ¼ ∂Ψ =∂EJL ¼ ∂U=∂EJL ¼ F−1Jk PkL ¼ JF−1Jk F−1Li ski: ð2:19Þ

First Piola–Kirchhoff stress in the Eulerian description is, from (2.11), (2.13), and (A.13),

PkL ¼
∂Ψ̂
∂DIJ

∂DIJ

∂FkL
¼ F−1Ik ðδJL−2DJLÞ

∂Ψ̂
∂DIJ

¼ F−1Ik ðδJL−2DJLÞ
∂Û
∂DIJ

¼ F−1Ik F−1LmF
−1
Jm ŜIJ : ð2:20Þ

The Eulerian analog of second Piola–Kirchhoff stress is

ŜJL ¼ ∂Ψ̂ =∂DJL ¼ ∂Û=∂DJL ¼ FkJFiLFiMPkM ¼ FkJFkNFiLFiMSNM ¼ JFiJFkLsik: ð2:21Þ
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Cauchy stress becomes, from (2.2),

sij ¼ J−1FiKFjL
∂Ψ
∂EKL

¼ J−1F−1Ki F
−1
Lj

∂Ψ̂
∂DKL

: ð2:22Þ

Let cðF; θÞ ¼ cðE; θÞ ¼ ĉðD; θÞ denote specific heat per unit reference volume at constant deformation, where from (2.11):

c¼ ∂U=∂θ¼ θð∂η=∂θÞ ¼ −θð∂2Ψ=∂θ2Þ: ð2:23Þ
The rate of internal energy can be expanded as

_U ¼ ð∂U=∂FÞ : _F þ ð∂U=∂ηÞ_η ¼ P : _F þ θ½ð∂η=∂FÞ : _F þ ð∂η=∂θÞ _θ �: ð2:24Þ
Substituting (2.24) and (2.23) into (2.7) leads to

c _θ ¼ θð∂2Ψ=∂F∂θÞ : _F−∇0 � Q : ð2:25Þ
Defining thermal stress coefficients βðE; θÞ and β̂ðD; θÞ as

β ¼ ∂η=∂E¼ −∂2Ψ =∂E∂θ; β̂ ¼ ∂η=∂D¼ −∂2Ψ̂ =∂D∂θ; ð2:26Þ

∂2Ψ=∂θ∂FiJ ¼−βiJ ¼−β JLFiL ¼ −β̂KLF
−1
Ki F

−1
LmF

−1
Jm ; ð2:27Þ

and using (A.20), (2.25) can be written as

c _θ ¼−θβ : _E−∇0 � Q ; ĉ _θ ¼−θβ̂ : _D−∇0 � Q : ð2:28Þ
Second-order tensor Grüneisen parameters are defined as

Γ ¼ β=c; Γ̂ ¼ β̂=ĉ: ð2:29Þ
The following Maxwell-type equalities can be derived using procedures in Thurston (1974) and Clayton (2011a):

θΓ ¼ ðθ=cÞð∂η=∂EÞ ¼−∂S=∂η¼ −∂θ=∂E; ð2:30Þ

θΓ̂ ¼ ðθ=ĉÞð∂η=∂DÞ ¼−∂Ŝ=∂η¼−∂θ=∂D; ð2:31Þ

ðθ=cSÞα ¼ ðθ=cSÞð∂E=∂θÞ ¼ ∂E=∂η¼−∂θ=∂S ; ð2:32Þ

ðθ=ĉSÞα̂ ¼ ðθ=ĉSÞð∂D=∂θÞ ¼ ∂D=∂η¼ −∂θ=∂Ŝ ; ð2:33Þ

α ¼ ∂E=∂θ¼ ∂η=∂S ; α̂ ¼ ∂D=∂θ¼ ∂η=∂Ŝ : ð2:34Þ
Analogously to (2.26) and (2.27),

θΓ ¼−∂2U=∂E∂η; θΓ̂ ¼−∂2Û=∂D∂η; ð2:35Þ

∂2U=∂η∂FiJ ¼−θΓiJ ¼−θΓ JLFiL ¼−θΓ̂KLF
−1
Ki F

−1
LmF

−1
Jm : ð2:36Þ

Defining αkL ¼ ∂FkL=∂θ at constant P, thermal expansion coefficients are related implicitly by

2αIJ ¼ αkLðδLIFkJ þ δLJFkIÞ; 2α̂IJ ¼ αkLF
−1
LmðF−1Ik F−1Jm þ F−1Jk F−1Im Þ: ð2:37Þ

Specific heats per unit volume at constant deformation (c¼ c ¼ ĉ) and constant stress (cS ¼ cS ¼ ĉS) obey (Thurston, 1974;
Clayton, 2011a)

c¼ θð∂η=∂θÞjE;D ¼−θð∂2Ψ=∂θ2Þ ¼ ∂U=∂θ; cS ¼ θð∂η=∂θÞjS ;Ŝ : ð2:38Þ

Isothermal second-order thermodynamic elastic coefficients are

C
θ
IJKL ¼

∂SKL
∂EIJ

�����θ ¼ ∂2Ψ
∂EIJ∂EKL

; Ĉ
θ

IJKL ¼
∂ŜKL
∂DIJ

�����θ ¼ ∂2Ψ̂
∂DIJ∂DKL

: ð2:39Þ

Isentropic second-order thermodynamic elastic coefficients are

C
η
IJKL ¼

∂SKL
∂EIJ

�����η ¼ ∂2U
∂EIJ∂EKL

; Ĉ
η

IJKL ¼
∂ŜKL
∂DIJ

�����η ¼ ∂2Û
∂DIJ∂DKL

: ð2:40Þ

Thermal expansion and thermal stress coefficients are related by

β ¼ ð∂η=∂EÞjθ ¼ ð∂η=∂S Þjθ : ð∂S=∂EÞjθ ¼ α : C
θ
; β IJ ¼ αKLC

θ
KLIJ : ð2:41Þ

β̂ ¼ ð∂η=∂DÞjθ ¼ ð∂η=∂Ŝ Þjθ : ð∂Ŝ=∂EÞjθ ¼ α̂ : Ĉ
θ
; β̂ IJ ¼ α̂KLĈ

θ

KLIJ : ð2:42Þ
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Specific heats per unit reference volume are related, using the procedure in Thurston (1974), as

cS−c¼ θα : β ¼ θα̂ : β̂: ð2:43Þ
Isentropic and isothermal coefficients are related, using Maxwell relations, by

C
η ¼ ð∂S=∂EÞjη ¼ ð∂S=∂EÞjθ þ ð∂S=∂θjEÞ⊗ð∂θ=∂EÞjθ ¼C

θ þ ðθ=cÞβ⊗β; ð2:44Þ

Ĉ
η ¼ ð∂Ŝ=∂DÞjη ¼ ð∂Ŝ=∂DÞjθ þ ð∂Ŝ=∂θjDÞ⊗ð∂θ=∂DÞjθ ¼ Ĉ

θ þ ðθ=ĉÞβ̂⊗β̂; ð2:45Þ
or in indicial notation,

C
η
IJKL ¼C

θ
IJKL þ ðθ=cÞβ IJβKL; Ĉ

η

IJKL ¼ Ĉ
θ

IJKL þ ðθ=ĉÞβ̂ IJ β̂KL: ð2:46Þ

Strain energy density, per unit reference volume, is defined as follows for a homogeneous solid:

WðFÞ ¼W ½EðFÞ� ¼ Ŵ ½DðFÞ� ¼ Ψ ðF; θ0Þ: ð2:47Þ
where θ0 is a fixed reference temperature. When temperature/entropy effects are omitted, second-order elastic coefficients
reduce to

C ¼ ∂2W=∂E∂E; Ĉ ¼ ∂2Ŵ=∂D∂D: ð2:48Þ
Tangent modulus AðFÞ is defined as

A¼ ∂P=∂F ¼ ∂2W=∂F∂F; AiJkL ¼ ∂PkL=∂FiJ ¼ ∂2W=∂FiJ∂FkL: ð2:49Þ
Coefficients A and C are related by

AiJkL ¼ ∂ðFkMSMLÞ=∂FiJ ¼ FiNFkMCNJML þ δikSJL ¼ FiNFkMCNJML þ δikF
−1
Jn PnL: ð2:50Þ

Similarly, coefficients A and Ĉ are related by

AiJkL ¼ ∂ðF−1Ik F−1LmF
−1
PmŜIPÞ=∂FiJ ¼ F−1Qi F

−1
Ik F−1JmF−1RmF

−1
Ln F

−1
Pn ĈQRIP−F−1Jk PiL−F

−1
Li PkJ−F

−1
Jm F−1LmFkNPiN : ð2:51Þ

Equating (2.50) and (2.51),

C IJKL ¼ F−1Ii F−1MiF
−1
Jj F−1Nj F

−1
Kk F

−1
OkF

−1
Ll F

−1
Pl ĈMNOP−F−1Ik F−1Kk F

−1
Jn PnL−F−1Ii F−1KmF

−1
JmPiL−F−1Ii F−1KmF

−1
Li PmJ−F−1Ii F−1Jm F−1LmPiK : ð2:52Þ

Relations analogous to (2.52) hold when either isothermal or isentropic coefficients are used. The local linear momentum
balance for a homogeneous elastic solid in the absence of body force becomes, with Aθ ¼ ∂2Ψ ðF; θÞ=∂F∂F ,

ρ0 €xi ¼ Aθ
iJkL∂J∂Lxk−βiJ∂Jθ: ð2:53Þ

Stress power per unit reference volume is, from (A.20),

_W ¼ ð∂W=∂FÞ : _F ¼ P : _F ¼ S : _E ¼ Ŝ : _D ¼ Jr : d: ð2:54Þ
Let δW be a first-order increment in strain energy associated with deformation gradient variation δF . Then analogously

to (2.54),

δW ¼ ð∂W=∂FÞ : δF ¼ P : δF ¼ S : δE¼ Ŝ : δD¼ Jr : δϵ; ð2:55Þ
where

δϵ¼ F−T δE F−1 ¼ F δD FT; δϵij ¼ F−1Ki δEKLF
−1
Lk ¼ FiKδDKLFjL; ð2:56Þ

δE¼ 1
2 ½FTδF þ ðδFÞTF�; δϵ¼ 1

2½ðδFÞF−1 þ F−TðδFÞT�: ð2:57Þ
The first equality in each of (2.56), or the second equality of (2.57), can be used as a definition for spatial increment δϵ; the
second equality in each of (2.56) is consistent with transformation formulae between δD and δE analogous to (A.20). This
definition for δϵ is unique when incremental deformation gradient δF is prescribed, and is identical to that used widely
elsewhere in the analysis of internal elastic stability (e.g., Morris and Krenn, 2000, their Eq. (9)). Making the connection
δW2 _W dt, it follows that δϵ2d dt. Integrated quantity

R
δϵ2

R
d dt is path dependent (in contrast to E or D that depend

only on current values of F or F−1), and is not used in analysis in this paper or others (Wang et al., 1993; Morris and Krenn,
2000; Hill, 1975) dealing with intrinsic stability.

Spatial modulus c is defined as

c ijkl ¼ J−1FiIFjJFkKFlLCIJKL ¼ J−1F−1Ii F−1Jj F−1Kk F
−1
Ll Ĉ IJKL−silδjk−sjlδik−sikδjl−sjkδil: ð2:58Þ

The fully symmetric form of incremental tangent modulus B is (Wang et al., 1993; Morris and Krenn, 2000; Clayton, 2012)

Bijkl ¼ c ijkl þ 1
2ðsikδjl þ silδjk þ sjlδik þ sjkδil−sijδkl−sklδijÞ

¼ J−1F−1Ii F−1Jj F−1Kk F
−1
Ll Ĉ IJKL−1

2ðsikδjl þ silδjk þ sjlδik þ sjkδil þ sijδkl þ sklδijÞ: ð2:59Þ
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Consider an elastic solid undergoing homogeneous deformation, omitting thermal effects. Intrinsic mechanical stability can
be defined as local convexity of strain energy with respect to a given strain or deformation measure (Hill, 1975; Parry, 1978;
Clayton, 2013) and therefore depends on the choice of conjugate stress–strain variables. For intrinsic stability consistent
with classical stability under all-around dead loading (Hill, 1975),

δP : δF ¼ δF : ð∂2W=∂F∂FÞ : δF ¼ δF : A : δF40⇔det½A�40: ð2:60Þ
For intrinsic stability consistent with classical stability under controlled Cauchy stress (Wang et al., 1993; Morris and Krenn,
2000),

δr : δϵ¼ ½ð∂r=∂EÞ : δE� : δϵ¼ δϵ : B : δϵ40⇔det½B�40: ð2:61Þ
The first two equalities in (2.61) strictly apply only when F is symmetric, but the inequalities apply regardless since since
6�6 matrix ½B� is rotationally invariant. Symmetric coefficients Bijkl (e.g., evaluated from isentropic thermodynamic moduli)
enter the linear momentum equation for propagation of small amplitude elastic waves from a hydrostatically stressed initial
configuration (Thomsen, 1972); when the initial configuration is stressed anisotropically, different tangent moduli may enter
the wave equation (Thurston, 1965).

2.3. Thermoelastic potentials and material constants

An unstrained reference state is defined by ðE; θÞ ¼ ð0; θ0Þ, ðD; θÞ ¼ ð0; θ0Þ, and temperature change from this reference
state is Δθ¼ θ−θ0. In what follows, Greek subscripts denote Voigt notation for symmetric indices, e.g., ð�ÞIJ ¼ ð�ÞJI2ð�Þα :

1121; 2222; 3323; 23¼ 3224; 13¼ 3125; 12¼ 2126: ð2:62Þ
Following the standard convention (Brugger, 1964; Thurston, 1974; Clayton, 2011a), shear strain components contain a factor
of two, but stresses and stiffness coefficients do not. For example, E6 ¼ 2E12, D6 ¼ 2D12, S6 ¼ S12, C45 ¼C2313. First consider
free energy per unit reference volume, which can be expressed as in either of the following series expansions about energy
Ψ0 from the reference state:

Ψ ðE; θÞ ¼Ψ0 þ C
θ
0αEα þ

1
2!

C
θ
0αβEαEβ þ

1
3!

C
θ
0αβγEαEβEγ þ⋯−β0αEαΔθ−

1
2!

β0αβEαEβΔθ−
1
2!

β′0αEαðΔθÞ2−⋯þ gðθÞ; ð2:63Þ

Ψ̂ ðD; θÞ ¼Ψ0 þ Ĉ
θ

0αDα þ
1
2!

Ĉ
θ

0αβDαDβ þ
1
3!

Ĉ
θ

0αβγDαDβDγ þ⋯−β̂0αDαΔθ−
1
2!

β̂0αβDαDβΔθ−
1
2!

β̂′0αDαðΔθÞ2−⋯þ gðθÞ: ð2:64Þ

Letting ð � Þj0 ¼ ð � ÞjE ¼ D ¼ 0;θ ¼ θ0 , material coefficients with zero subscripts are constants evaluated at the reference state,
which is assumed stress free:

Ψ0 ¼ Ψ ð0; θ0Þ; C
θ
0α ¼ ð∂Ψ =∂EαÞj0 ¼ 0; ð2:65Þ

C
θ
0αβ ¼

∂2Ψ
∂Eα∂Eβ

�����
!

0

; C
θ
0αβγ ¼

∂3Ψ
∂Eα∂Eβ∂Eγ

�����
!

0

;

  
ð2:66Þ

β0α ¼ −
∂2Ψ
∂θ∂Eα

�����
!

0

; β0αβ ¼−
∂3Ψ

∂θ∂Eα∂Eβ

�����
!

0

; β′0α ¼−
∂3Ψ

∂θ2∂Eα

�����
!

0

;

   
ð2:67Þ

and

Ψ0 ¼ Ψ̂ ð0; θ0Þ; Ĉ
θ

0α ¼ ð∂Ψ =∂DαÞj0 ¼ 0; ð2:68Þ

Ĉ
θ

0αβ ¼
∂2Ψ̂

∂Dα∂Dβ

�����
!

0

; Ĉ
θ

0αβγ ¼
∂3Ψ̂

∂Dα∂Dβ∂Dγ

�����
!

0

;

  
ð2:69Þ

β̂0α ¼ −
∂2Ψ̂
∂θ∂Dα

�����
!

0

; β̂0αβ ¼−
∂3Ψ̂

∂θ∂Dα∂Dβ

�����
!

0

; β̂′0α ¼ −
∂3Ψ̂

∂θ2∂Dα

�����
!

0

:

   
ð2:70Þ

Letting c0 denote a constant specific heat for the unstrained material, thermal free energy is prescribed as

g¼−c0θ ln ðθ=θ0Þ⇒c0 ¼−θ0ð∂2g=∂θ2Þj0: ð2:71Þ
Internal energy can be treated in a similar way, letting U0 denote internal energy in the reference state defined by

ðE; ηÞ ¼ ð0; η0Þ, ðD; ηÞ ¼ ð0; η0Þ, and entropy change from this reference state is Δη¼ η−η0:

U ðE; ηÞ ¼U0 þ C
η
0αEα þ

1
2!

C
η
0αβEαEβ þ

1
3!

C
η
0αβγEαEβEγ þ⋯−θ0 Γ0αEαΔηþ

1
2!

Γ0αβEαEβΔηþ
1
2!

Γ ′0αEαðΔηÞ2 þ⋯−hðηÞ
� �

;

ð2:72Þ
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Û ðD; ηÞ ¼U0 þ Ĉ
η

0αDα þ 1
2!

Ĉ
η

0αβDαDβ þ 1
3!

Ĉ
η

0αβγDαDβDγ þ⋯−θ0 Γ̂0αDαΔηþ 1
2!

Γ̂0αβDαDβΔηþ 1
2!

Γ̂ ′0αDαðΔηÞ2 þ⋯−hðηÞ
� �

:

ð2:73Þ
Material coefficients evaluated at the unstressed reference state are

U0 ¼U ð0; η0Þ; C
η
0α ¼ ð∂U=∂EαÞj0 ¼ 0; ð2:74Þ

C
η
0αβ ¼

∂2U
∂Eα∂Eβ

�����
!

0

; C
η
0αβγ ¼

∂3U
∂Eα∂Eβ∂Eγ

�����
!

0

;

  
ð2:75Þ

θ0Γ0α ¼
θ

c
∂η
∂Eα

�����
!

0

¼−
∂θ
∂Eα

�����
!

0

¼ −
∂2U
∂η∂Eα

�����
!

0

;

   

θ0Γ0αβ ¼−
∂3U

∂η∂Eα∂Eβ

�����
!

0

; θ0Γ ′0α ¼−
∂3U

∂η2∂Eα

�����
!

0

;

  
ð2:76Þ

and

U0 ¼ Û ð0; η0Þ; Ĉ
η

0α ¼ ð∂Ψ =∂DαÞj0 ¼ 0; ð2:77Þ

Ĉ
η

0αβ ¼
∂2Û

∂Dα∂Dβ

�����
!

0

; Ĉ
η

0αβγ ¼
∂3Û

∂Dα∂Dβ∂Dγ

�����
!

0

;

  
ð2:78Þ

θ0Γ̂0α ¼
θ

ĉ
∂η
∂Dα

�����
!

0

¼−
∂θ
∂Dα

�����
!

0

¼−
∂2Û
∂η∂Dα

�����
!

0

;

   

θ0Γ̂0αβ ¼−
∂3Û

∂η∂Dα∂Dβ

�����
!

0

; θ0Γ̂ ′0α ¼ −
∂3Û

∂η2∂Dα

�����
!

0

:

  
ð2:79Þ

Letting c0 denote a constant specific heat for the unstrained material, and noting when the material is unstrained that
∂h=∂η¼ θ=θ0,

θ0h¼ c0θ0ðeΔη=c0−1Þ ¼ c0ð∂h=∂θ−θ0Þ⇒c0 ¼ θ0½∂h=ð∂h=∂ηÞ�j0: ð2:80Þ
Expanding the exponential as a Taylor series gives the isolated entropic contribution

h¼Δηþ 1
2!

ðΔηÞ2=c0 þ
1
3!

ðΔηÞ3=c20 þ⋯: ð2:81Þ

Material coefficients defined as derivatives of either free or internal energy with respect to E are related to those defined as
derivatives of either free or internal energy with respect to D in Appendix B.

3. Analytical solutions: homogeneous isothermal deformation of a cubic crystal

3.1. Cubic crystals

Analytical predictions of constitutive theories based on strain measures E and D are compared in what follows. In Section
3, attention is restricted to homogeneous, isothermal deformation of solids whose strain energy functions are truncated at
third order in strain, i.e., (2.63) and (2.64) degenerate to

Ψ ðE; θ0Þ ¼ 1
2 C

θ
0αβEαEβ þ 1

6 C
θ
0αβγEαEβEγ ¼ 1

2 CαβEαEβ þ 1
6CαβγEαEβEγ ; ð3:1Þ

Ψ̂ ðD; θ0Þ ¼ 1
2 Ĉ

θ

0αβDαDβ þ 1
6 Ĉ

θ

0αβγDαDβDγ ¼ 1
2 CαβDαDβ þ 1

6ĈαβγDαDβDγ ; ð3:2Þ

where, without further consequence, datum energy Ψ0 ¼ 0 has been assigned. When homogeneous deformation F is
imposed, differences in predictions of the two theories arise due to differences in strain measures EðFÞ and DðFÞ, which from
(A.14) or (A.15) are second order in strain, as well as differences in third-order elastic constants indicated in (B.9). Second-
order elastic constants are equal, as shown in (B.3). Following the second equalities in each of (3.1) and (3.2), θ superscripts
and 0 subscripts are dropped from the elastic constants, and Cαβ ¼C0αβ ¼ Ĉ0αβ .

Cubic crystals have at most three independent second-order elastic constants and can belong to point groups falling into
one of the two Laue groups; those belonging to the Laue group with higher symmetry have six independent third-order
constants (Thurston, 1974; Clayton, 2011a):

C11;C12;C44; C111;C112;C123;C144;C155;C456: ð3:3Þ
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The same components of Cαβγ and Ĉαβγ corresponding to Cαβγ in (3.3) are functionally independent, but numerical values of
the same components of Cαβγ and Ĉαβγ can differ. The latter two are related by (B.9) or (B.10), yielding

Ĉ111 ¼C111 þ 12C11; Ĉ112 ¼C112 þ 4C12; Ĉ123 ¼C123;

Ĉ144 ¼C144 þ 2C12; Ĉ155 ¼C155 þ C11 þ C12 þ 4C44; Ĉ456 ¼C456 þ 3C44: ð3:4Þ
In the reference state, bulk modulus B0, shear modulus G0, and Poisson ratio ν are defined as

B0 ¼ 1
3 ðC11 þ 2C12Þ; G0 ¼ 1

2ðC11−C12Þ;
ν¼ ð3B0−2G0Þ=ð6B0 þ 2G0Þ ¼ 1

3C12=ðC11 þ C12Þ: ð3:5Þ

Anisotropy ratio A is

A¼ 1−G0=C44 ¼ 1−
1
2
ðC11−C12Þ=C44; A¼ 0⇔isotropic: ð3:6Þ

Notice that of the constants ðB0;G0; ν;AÞ, only A depends on C44. Second-order elastic constants can be expressed in terms of
ðB0; ν;AÞ as follows:

C11

B0
¼ 3

1−ν
1þ ν

;
C12

B0
¼ 3ν

1þ ν
;

C44

B0
¼ 3

2ð1−AÞ
1−2ν
1þ ν

: ð3:7Þ

Requiring the quadratic (in strain) contribution to energy to be positive for all nonzero strains leads to the restrictions

B040; −1oνo1
2; Ao1: ð3:8Þ

Combinations of second- and third-order constants are related to pressure derivatives of tangent bulk and shear moduli at
the reference state (Thurston, 1965; Guinan and Steinberg, 1974):

B′
0 ¼

dB
dp

�����0 ¼ d½13 ðB11 þ 2B12Þ�
dp

�����0 ¼−
1

3B0

1
3
C111 þ 2C112 þ

2
3
C123

� �
; ð3:9Þ

G′
0 ¼

dG
dp

�����0 ¼ d½12 ðB11−B12Þ�
dp

�����0 ¼ −
1

6B0
ðC111−C123 þ 2G0Þ−1: ð3:10Þ

Here Bαβ are components of incremental stiffness (2.59) in Voigt notation, when stress is hydrostatic (sij ¼ −pδij). These can
be converted to expressions in terms of Ĉαβγ using (3.4):

B′
0 ¼−

1
3B0

1
3
Ĉ111 þ 2Ĉ112 þ

2
3
Ĉ123

� �
þ 4; ð3:11Þ

G′
0 ¼ −

1
6B0

ðĈ111−Ĉ123−11C11−C12Þ−1: ð3:12Þ

In some problems analyzed subsequently, certain assumptions are used to further reduce the number of independent
elastic constants. For a cubic crystal of the higher symmetry Laue group also obeying Cauchy's relations (Clayton, 2011a)–
which in Lagrangian theory correspond to pairwise central force interactions among atoms and may omit thermal-kinetic
and zero-point vibrational contributions to stiffness–two independent second-order constants and three independent third-
order constants remain:

C44 ¼C12; C155 ¼C112; C456 ¼C144 ¼C123: ð3:13Þ
From (3.7), the first of (3.13) is equivalent to A¼ 1−ð1−2νÞ=ð2νÞ. Although (3.13) is incompatible with correspondences (3.4),
(3.9) and (3.11) can still be applied independently. For an isotropic solid not necessarily obeying Cauchy's relations, two
independent second-order constants and three third-order constants also remain:

C44 ¼ 1
2 ðC11−C12Þ; C144 ¼ 1

2ðC112−C123Þ;
C155 ¼ 1

4 ðC111−C112Þ; C456 ¼ 1
8ðC111−3C112 þ 2C123Þ: ð3:14Þ

For a third-order elastic material simultaneously obeying Cauchy and isotropic symmetry restrictions, (3.13) and (3.14)
applied together, the response is parameterized by a single second-order constant (e.g., C11 or B0Þ:

C12 ¼ 1
3 C11⇔G0=B0 ¼ 3

5 ⇔ν¼ 1
4 ⇔C11 ¼ 9

5B0; ð3:15Þ
and a single third-order constant (e.g., C111 or B′

0B0Þ:
C112 ¼ 3C123 ¼ 1

5C111⇒

B′
0 ¼− 7

27 C111=B0; G′
0 ¼− 7

45 C111=B0−6
5; ðLagrangianÞ

B′
0 ¼− 7

27 Ĉ111=B0 þ 4; G′
0 ¼ − 7

45 Ĉ111=B0 þ 3
5: ðEulerianÞ ð3:16Þ
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Note that one of the three third-order relations in (3.14) becomes redundant when Cauchy conditions (3.13) are applied.
Here and in what follows4 in Section 3, (3.9), (3.11), and (3.16) all apply, but (3.4) no longer necessarily holds since all
relations in the latter are not generally compatible with (3.16). Behavior analyzed in what follows in Section 3 can be
described by the following energy functions, normalized by bulk modulus B0:

Ψ

3B0
¼ 1−ν

2ð1þ νÞ ðE
2
11 þ E222 þ E233Þ þ

ν

1þ ν
ðE11E22 þ E22E33 þ E33E11Þ þ

1
1−A

1−2ν
1þ ν

ðE212 þ E223 þ E213Þ−
1
70

B′
0EIJEKLEMN

�½δIJδKLδMN þ δIJðδKMδLN þ δKNδLMÞ þ δKLðδIMδJN þ δINδJMÞ þ δMNðδIKδJL þ δILδJK Þ þ δIK ðδJMδLN þ δJNδLMÞ
þδJLðδIMδKN þ δINδKMÞ þ δILðδJMδKN þ δJNδKMÞ þ δJK ðδIMδLN þ δINδLMÞ�; ð3:17Þ

Ψ̂

3B0
¼ 1−ν

2ð1þ νÞ ðD
2
11 þ D2

22 þ D2
33Þ þ

ν

1þ ν
ðD11D22 þ D22D33 þ D33D11Þ þ

1
1−A

1−2ν
1þ ν

ðD2
12 þ D2

23 þ D2
13Þ

−
1
70

ðB′
0−4ÞDIJDKLDMN � ½δIJδKLδMN þ δIJðδKMδLN þ δKNδLMÞ þ δKLðδIMδJN þ δINδJMÞ þ δMNðδIKδJL þ δILδJK Þ

þδIK ðδJMδLN þ δJNδLMÞ þ δJLðδIMδKN þ δINδKMÞ þ δILðδJMδKN þ δJNδKMÞ þ δJK ðδIMδLN þ δINδLMÞ�: ð3:18Þ

In these expressions, normalized quadratic contributions to energy, ð1=2B0ÞCαβEαEβ and ð1=2B0ÞCαβDαDβ , retain full cubic
anisotropy and depend on two dimensionless parameters ν and A, while normalized cubic contributions to energy,
ð1=6B0ÞCαβγEαEβEγ and ð1=6B0ÞĈαβγDαDβDγ , assume isotropic and Cauchy symmetries and depend only on dimensionless
parameter B′

0 in (3.17) and (3.18).
Values considered subsequently span a realistic range for crystalline solids: 0≤B′

0≤8, 1
10≤ν≤

2
5, and −1≤A≤ 1

2. When ν¼ 1
4,

the value B′
0 ¼ 4 corresponds to G′

0 ¼ 6
5, both of which are characteristic of pure polycrystalline substances (Guinan and

Steinberg, 1974; Steinberg, 1982). Third-order contributions drop out of Lagrangian and Eulerian energies when B′
0 ¼ 0 and

B′
0 ¼ 4, respectively. The Cauchy relations for third-order constants are reasonable for some real materials such as noble

metals (copper, silver, gold) wherein closed-shell repulsive interactions dominate anharmonic properties (Hiki and Granato,
1966). Therefore, the present model with property set ðν;A;B′

0Þ ¼ ð 14 ;0;4Þ would be a realistic representation of an
untextured polycrystalline noble metal. Different, stronger Cauchy-type relations have been proposed elsewhere (Hiki and
Granato, 1966) for cubic solids wherein the nonlinearity is again characterized by a single third-order constant, but these
other relations are incompatible with isotropy unless all third-order constants vanish, so they could not be applied to
describe an untextured polycrystal and are not investigated further here.

3.2. Hydrostatic loading

For uniform spherical deformation from initial volume V0 to final volume V ¼ JV0,

xi ¼ J1=3δiJXJ ; ∂K J ¼ ð∂J=∂FiJÞ∂KFiJ ¼ JF−1Ji ∂KFiJ ¼ 0; ð3:19Þ

F ¼ J1=31¼ V
V0

� �1=3

1; E¼ 1
2
ðJ2=3−1Þ1; D¼ 1

2
ð1−J−2=3Þ1: ð3:20Þ

Axial components of strain tensors E and D for spherical deformation (3.20) and uniaxial strain (to be discussed in this
section) are shown in Fig. 1 from 20% expansion to 40% compression. Strain component D11 tends to become more strongly
negative relative to E11 as J decreases.

In homogeneous cubic crystals or isotropic bodies, the stress state resulting from such deformation is hydrostatic:

sij ¼−pδij; PiK ¼−pJ2=3δiK ; SJK ¼ −pJ1=3δJK ; ŜJK ¼−pJ5=3δJK : ð3:21Þ
Therefore, Cauchy pressure is, using (A.8) and (A.13),

p¼−
1
3
J−1=3SKK ¼−

1
3
J−1=3

∂Ψ
∂J

∂J
∂EKK

�����
!

F ¼ J1=31

¼−
∂Ψ
∂J

¼ −
1
3
J−5=3ŜKK ¼−

1
3
J−5=3

∂Ψ̂
∂J

∂J
∂DKK

�����
!

F−1 ¼ J−1=31

¼ −
∂Ψ̂
∂J

:

0
@

0
@ ð3:22Þ

Energy densities per unit reference volume in (3.17) and (3.18) reduce to

Ψ =B0 ¼ 9
8 ðJ2=3−1Þ2½1−1

2B
′
0ðJ2=3−1Þ�; ð3:23Þ

Ψ̂ =B0 ¼ 9
8 ð1−J−2=3Þ2½1−1

2ðB′
0−4Þð1−J−2=3Þ�: ð3:24Þ

These expressions are independent of anisotropy factor A and Poisson ratio ν; they also hold for any cubic crystal, regardless
of any possible isotropic or Cauchy symmetries. From (3.22), Cauchy pressures resulting from third-order Lagrangian and
4 A perhaps more physically plausible, yet more mathematically cumbersome, approach would impose (3.13) only on Lagrangian constants and then
use (3.4) to obtain an alternative set of Eulerian constants.



Fig. 1. Lagrangian (E11) and Eulerian (D11) strain components under spherical and uniaxial deformation.

Fig. 2. Normalized (a) energy density and (b) hydrostatic pressure for spherical deformation.
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Eulerian models are, respectively,

p=B0 ¼ 3
2 ðJ−1=3−J1=3Þ½1−3

4B
′
0ðJ2=3−1Þ�; ðLagrangianÞ ð3:25Þ

p=B0 ¼ 3
2 ðJ−7=3−J−5=3Þ½1þ 3

4ðB′
0−4ÞðJ−2=3−1Þ�: ðEulerianÞ ð3:26Þ

These can be compared with the well known respective Birch–Murnaghan and Murnaghan equations of state (Birch, 1947;
Murnaghan, 1951, 1937; Thomsen, 1970):

p=B0 ¼ 3
2 ðJ−7=3−J−5=3Þ½1þ 3

4ðB′
0−4ÞðJ−2=3−1Þ�; ðBirch–MurnaghanÞ ð3:27Þ

p=B0 ¼ ðJ−B′
0−1Þ=B′

0; lim
B′
0-0

p=B0 ¼−lnJ: ðMurnaghanÞ ð3:28Þ

Since pressures in (3.26) and (3.27) coincide, the Birch–Murnaghan EOS is obtained directly from the present third-order
Eulerian elastic theory based on strain measure D when applied to a cubic crystal subjected to spherical deformation. Values
of normalized energy density Ψ =B0 and Ψ̂ =B0 are shown in Fig. 2(a) for several values of B′

0 over compression range
0:6≤J≤1. Normalized pressures from (3.25) to (3.28) are shown in Fig. 2(b). As B′

0 increases, energy and pressure increase
more rapidly with decreasing volume for Eulerian theory compared to Lagrangian theory. For physically characteristic value
B′
0 ¼ 4, Eulerian theory provides much closer agreement with the Murnaghan EOS, giving a strongly increasing pressure at

large compression representative of real materials; for physically low value B′
0 ¼ 0, Lagrangian theory nearly coincides with

the Murnaghan EOS.
Now consider incremental modulus B of (2.59), which for cubic crystals under spherical deformation reduces to

Bijkl ¼ J1=3C IJKLδiIδjJδkKδlL þ pðδijδkl−δikδjl−δilδjkÞ ¼ J−7=3ĈIJKLδiIδjJδkKδlL þ pðδijδkl þ δikδjl þ δilδjkÞ: ð3:29Þ

This tensor has the same symmetries as second-order elastic moduli C and Ĉ, and thus three independent components. For
Lagrangian theory with energy function (3.17), these are

B11=B0 ¼ 3J1=3
1−ν
1þ ν

−
9
10

B′
0ðJ2=3−1Þ−

1
2
ðJ−2=3−1Þ 1−

3
4
B′
0ðJ2=3−1Þ

� �� �
; ð3:30Þ
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B12=B0 ¼ 3J1=3
ν

1þ ν
−

3
10

B′
0ðJ2=3−1Þ þ

1
2
ðJ−2=3−1Þ 1−

3
4
B′
0ðJ2=3−1Þ

� �� �
; ð3:31Þ

B44=B0 ¼ 3J1=3
1−2ν

2ð1−AÞð1þ νÞ−
3
10

B′
0ðJ2=3−1Þ−

1
2
ðJ−2=3−1Þ 1−

3
4
B′
0ðJ2=3−1Þ

� �� �
: ð3:32Þ

For Eulerian theory with energy function (3.18), these are

B11=B0 ¼ 3J−7=3
1−ν
1þ ν

−
9
10

ðB′
0−4Þð1−J−2=3Þ þ

3
2
ð1−J2=3Þ 1þ 3

4
ðB′

0−4ÞðJ−2=3−1Þ
� �� �

; ð3:33Þ

B12=B0 ¼ 3J−7=3
ν

1þ ν
−

3
10

ðB′
0−4Þð1−J−2=3Þ þ

1
2
ð1−J2=3Þ 1þ 3

4
ðB′

0−4ÞðJ−2=3−1Þ
� �� �

; ð3:34Þ

B44=B0 ¼ 3J−7=3
1−2ν

2ð1−AÞð1þ νÞ−
3
10

ðB′
0−4Þð1−J−2=3Þ þ

1
2
ð1−J2=3Þ 1þ 3

4
ðB′

0−4ÞðJ−2=3−1Þ
� �� �

: ð3:35Þ

For homogeneous hydrostatic loading in which pressure is applied incrementally, (2.61) is an exact criterion for elastic
stability (Milstein and Hill, 1979), and there is no practical need to consider other criteria such as (2.60). Intrinsic stability
criterion (2.61) can here be reduced to the following three normalized conditions:

ΛB ¼ B

B0
¼ B11 þ 2B12

3B0
40; ΛG ¼ G

G0
¼ B11−B12

2G0
40; Λμ ¼ μ

C44
¼ B44

C44
40: ð3:36Þ

For Lagrangian theory, left sides of these equalities become, explicitly,

ΛB ¼ f1−3
2
B′
0ðJ2=3−1Þ þ

1
2
ðJ−2=3−1Þ½1−3

4
B′
0ðJ2=3−1Þ�gJ1=3; ð3:37Þ

ΛG ¼ 1−
3ð1þ νÞ
5ð1−2νÞB

′
0ðJ2=3−1Þ−

1þ ν

1−2ν
ðJ−2=3−1Þ 1−

3
4
B′
0ðJ2=3−1Þ

� �� �
J1=3; ð3:38Þ

Λμ ¼ 1−
3ð1−AÞð1þ νÞ

5ð1−2νÞ B′
0ðJ2=3−1Þ−

ð1−AÞð1þ νÞ
ð1−2νÞ ðJ−2=3−1Þ 1−

3
4
B′
0ðJ2=3−1Þ

� �� �
J1=3: ð3:39Þ

Notice ΛB depends only on ðJ;B′
0Þ, whereas ΛG depends on ðJ; ν;B′

0Þ and Λμ depends on ðJ;A; ν;B′
0Þ. Also, Λμ-ΛG as A-0.

Analogously, for Eulerian theory,

ΛB ¼ 1−
3
2
ðB′

0−4Þð1−J−2=3Þ þ
5
2
ð1−J2=3Þ 1þ 3

4
ðB′

0−4ÞðJ−2=3−1Þ
� �� �

J−7=3; ð3:40Þ

ΛG ¼ 1−
3ð1þ νÞ
5ð1−2νÞ ðB

′
0−4Þð1−J−2=3Þ þ

1þ ν

1−2ν
ð1−J2=3Þ 1−

3
4
ðB′

0−4Þð1−J−2=3Þ
� �� �

J−7=3; ð3:41Þ

Λμ ¼ 1−
3ð1−AÞð1þ νÞ

5ð1−2νÞ ðB′
0−4Þð1−J−2=3Þ þ

ð1−AÞð1þ νÞ
ð1−2νÞ ð1−J2=3Þ 1−

3
4
ðB′

0−4Þð1−J−2=3Þ
� �� �

J−7=3: ð3:42Þ

Table 1 shows stable domains for spherical/hydrostatic strain, defined as J for which (3.37)–(3.47) are positive. For the
range of properties analyzed, stability predictions of either theory are similar, with Lagrangian theory stable to slightly
larger compression (at B′

0 ¼ 0) and Eulerian to slightly larger tension (at B′
0 ¼ 8Þ.

3.3. Uniaxial strain

For uniform uniaxial strain in the X1 direction,

x1 ¼ JX1; x2 ¼ X2; x3 ¼ X3; ∂K J ¼ 0; ð3:43Þ
Table 1
Stable domains for spherical deformation over property ranges 0≤B′0≤8, 1

10≤ν≤
2
5, and −1≤A≤ 1

2.

Theory ΛB40 ΛG40 Λμ40

Lagrangian 0:00o Jo1:13 0:81o Jo1:06 0:90o Jo1:03
∞4p=B04−0:12 0:214p=B04−0:06 0:114p=B04−0:03

Eulerian 0:76o Jo1:23 0:88o Jo1:07 0:93o Jo1:04
0:194p=B04−0:08 0:124p=B04−0:07 0:074p=B04−0:04
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F ¼ ½FiJ � ¼ ½∂xi=∂XJ � ¼
J 0 0
0 1 0
0 0 1

2
64

3
75; F−1 ¼ ½F−1Ij � ¼ ½∂XI=∂xj� ¼

J−1 0 0
0 1 0
0 0 1

2
64

3
75; ð3:44Þ

E¼ ½EIJ � ¼
1
2 ðJ2−1Þ 0 0

0 0 0
0 0 0

2
64

3
75; D¼ ½DIJ � ¼

1
2 ð1−J−2Þ 0 0

0 0 0
0 0 0

2
64

3
75: ð3:45Þ

Specifically considered here is deformation along a 〈100〉 direction, wherein both referential and spatial Cartesian coordinate
axes are aligned parallel to cubic axes of the undeformed crystal lattice. Energies per unit volume in (3.17) and (3.18)
reduce to

Ψ =B0 ¼
C11

8B0
ðJ2−1Þ2 þ C111

48B0
ðJ2−1Þ3 ¼ 3

8
ðJ2−1Þ2 1−ν

1þ ν
−

3
14

B′
0ðJ2−1Þ

� �
; ð3:46Þ

Ψ̂ =B0 ¼
C11

8B0
ð1−J−2Þ2 þ Ĉ111

48B0
ð1−J−2Þ3 ¼ 3

8
ð1−J−2Þ2 1−ν

1þ ν
−

3
14

ðB′
0−4Þð1−J−2Þ

� �
: ð3:47Þ

Notice that energy, and hence stresses and pressure, depend on material constants B0, B′
0, and ν, but not anisotropy factor A

for uniaxial strain along 〈100〉. Normalized energy densities Ψ =B0 and Ψ̂ =B0 are shown in Fig. 3(a) for several values of ν
(with fixed B′

0 ¼ 4) over the compression range 0:6≤J≤1, and similarly in Fig. 3(b) for several values of B′
0 with fixed ν¼ 1

4. As
ν decreases, shear modulus G0 increases, and energy increases when J and B′

0 are held fixed. As B′
0 increases, energy

increases more rapidly with decreasing volume for Eulerian compared to Lagrangian theory as expected considering the
rapid increase in jD11j with decreasing volume in Fig. 1. When B′

0 ¼ 0, Eulerian theory predicts unrealistic negative energy
for Jo0:77.

First consider Lagrangian theory based on strain measure E. In Voigt notation, nonzero second Piola–Kirchhoff stress
components Sα ¼ ∂Ψ =∂Eα are

S1 ¼
1
2
ðJ2−1Þ C11 þ

1
4
C111ðJ2−1Þ

� �
¼ 3

2
B0ðJ2−1Þ

1−ν
1þ ν

−
9
28

B′
0ðJ2−1Þ

� �
; ð3:48Þ

S2 ¼ S3 ¼
1
2
ðJ2−1Þ C12 þ

1
4
C112ðJ2−1Þ

� �
¼ 3

2
B0ðJ2−1Þ

ν

1þ ν
−

9
140

B′
0ðJ2−1Þ

� �
: ð3:49Þ

Cauchy stresses sij ¼ J−1FjMPiM ¼ J−1FiLFjMSLM and pressure p¼ − 1
3 skk are, in Voigt notation,

s1 ¼ JS1 ¼
3
2
B0ðJ3−JÞ

1−ν
1þ ν

−
9
28

B′
0ðJ2−1Þ

� �
; ð3:50Þ

s2 ¼ s3 ¼ J−1S2 ¼ J−1S3 ¼
3
2
B0ðJ−J−1Þ

ν

1þ ν
−

9
140

B′
0ðJ2−1Þ

� �
; ð3:51Þ

p¼−
1
2
B0ðJ2−1Þ J

1−ν
1þ ν

−
9
28

B′
0ðJ2−1Þ

� �
þ 2J−1

ν

1þ ν
−

9
140

B′
0ðJ2−1Þ

� �� �
: ð3:52Þ

The ratio R of pressure under uniaxial strain to that under spherical deformation at the same volume ratio J is found by
dividing (3.52) by (3.25):
Fig. 3. Normalized energy density under uniaxial compression for (a) variable ν and (b) variable B′0.
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R¼
ð1−J2Þ J

1−ν
1þ ν

−
9
28

B′
0ðJ2−1Þ

� �
þ 2J−1

ν

1þ ν
−

9
140

B′
0ðJ2−1Þ

� �� �

3ðJ−1=3−J1=3Þ 1−
3
4
B′
0ðJ2=3−1Þ

� � : ð3:53Þ

Now consider Eulerian theory based on strain measure D. In Voigt notation, nonzero stress components Ŝα ¼ ∂Ψ̂ =∂Dα are

Ŝ1 ¼
1
2
ð1−J−2Þ C11 þ

1
4
Ĉ111ð1−J−2Þ

� �
¼ 3

2
B0ð1−J−2Þ

1−ν
1þ ν

−
9
28

ðB′
0−4Þð1−J−2Þ

� �
; ð3:54Þ

Ŝ2 ¼ Ŝ3 ¼
1
2
ð1−J−2Þ C12 þ

1
4
Ĉ112ð1−J−2Þ

� �
¼ 3

2
B0ð1−J−2Þ

ν

1þ ν
−

9
140

B′
0ð1−J−2Þ

� �
: ð3:55Þ

Cauchy stresses sij ¼ J−1F−1Li F
−1
Mj ŜLM and pressure p¼− 1

3 skk are, in Voigt notation,

s1 ¼ J−3Ŝ1 ¼
3
2
B0ðJ−3−J−5Þ

1−ν
1þ ν

−
9
28

ðB′
0−4Þð1−J−2Þ

� �
; ð3:56Þ

s2 ¼ s3 ¼ J−1Ŝ2 ¼ J−1Ŝ3 ¼
3
2
B0ðJ−1−J−3Þ

ν

1þ ν
−

9
140

B′
0ð1−J−2Þ

� �
; ð3:57Þ

p¼−
1
2
B0ðJ−3−J−5Þ

1−ν
1þ ν

−
9
28

ðB′
0−4Þð1−J−2Þ þ 2J2

ν

1þ ν
−

9
140

ðB′
0−4Þð1−J−2Þ

� �� �
: ð3:58Þ

The ratio R of pressure under uniaxial strain to that under spherical deformation at the same volume ratio J is found by
dividing (3.58) by (3.26):

R¼
ðJ−5−J−3Þ 1−ν

1þ ν
−
9
28

ðB′
0−4Þð1−J−2Þ þ 2J2

ν

1þ ν
−

9
140

ðB′
0−4Þð1−J−2Þ

� �� �

3ðJ−7=3−J−5=3Þ 1þ 3
4
ðB′

0−4ÞðJ−2=3−1Þ
� � : ð3:59Þ

Normalized axial components of true (equivalently, Cauchy or first Piola–Kirchhoff) stress P ¼−P11 ¼ −s11, positive in
compression, are compared in Fig. 4(a) for several values of ν at fixed B′

0 ¼ 4 over 0:6≤J≤1, and similarly in Fig. 4(b) for
variable B′

0 with ν¼ 1
4. As ν decreases, shear modulus G0 increases, and compressive stress increases when J and B′

0 are held
fixed. As B′

0 increases, P increases more rapidly with decreasing volume for Eulerian compared to Lagrangian theory,
providing a more physically realistic representation of real solid behavior for V=V0≤0:9 (Jeanloz, 1989). Pressure ratios of
(3.53) and (3.59) are compared for the same volume ranges and property sets in Fig. 5(a) and (b). For the most physically
representative case B′

0 ¼ 4, Lagrangian theory predicts Ro1 for J≲0:9, and Eulerian predicts R41 for Jo1. In analysis of
shock physics data, material shear strength is often estimated as the difference between P in a uniaxial compression test and
p in hydrostatic compression (Graham and Brooks, 1971; Kondo and Ahrens, 1983). The present analysis shows that such a
procedure would underestimate strength for Lagrangian theory (for Ro1) and overestimate strength for Eulerian theory
ðR41Þ.

Under uniaxial strain deformation, stiffness coefficients A and B become too lengthy to write down individually in closed
form, but can easily be calculated using (2.50), (2.51) and (2.59). Intrinsic stability criteria (2.60) and (2.61) can be tested by
considering the following inequalities (Clayton, 2012) that are necessary conditions for stability under homogeneous strain:

det½A�40⇔ΛA ¼ λminð½Aαβ�Þ=λ040; det½B�40⇔ΛB ¼ λminð½Bαβ�Þ=λ040: ð3:60Þ
Here, λminð½��Þ refers to the minimum eigenvalue of 6� 6 matrix ½��, and λ0 ¼ λminð½Cαβ�Þ is the minimum eigenvalue of the
second-order elastic stiffness matrix in the undeformed material. When F ¼ 1, ΛA ¼ ΛB ¼ 1. Incremental stiffness B in (2.59)
Fig. 4. Normalized axial true stress under uniaxial compression for (a) variable ν and (b) variable B′0.



Fig. 5. Ratio R of Cauchy pressure under uniaxial compression to Cauchy pressure under spherical compression for (a) variable ν and (b) variable B′0.

Table 2
Stable domains for uniaxial strain over property ranges 0≤B′0≤8, 1

10≤ν≤
2
5, and −1≤A≤ 1

2.

Theory det½A�40 det½B�40

Lagrangian 0:81o Jo1:02 0:90o Jo1:02
0:184P=B04−0:02 0:104P=B04−0:02

Eulerian 0:94o Jo1:03 0:95o Jo1:03
0:064P=B04−0:03 0:054P=B04−0:03
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already has full Voigt symmetry and can be written immediately as a 6�6 matrix; the symmetrized form of A entering
(3.60) is formed from converting the following fourth-order tensor to Voigt notation (Clayton, 2012):

AIJKL ¼ 1
4ðAiJkLδiIδkK þ AjIkLδjJδkK þ AiJlKδiIδlL þ AjIlKδjJδlLÞ: ð3:61Þ

Table 2 shows stable domains for uniaxial strain, defined as J for which either of (3.60) applies. For the range of properties
analyzed, stability predictions of either theory are similar, with Lagrangian theory stable to slightly larger compression and
Eulerian to slightly larger tension. First instability occurs for ν¼ 2

5 and A¼−1, properties corresponding to lowest shear
modulus C44. In compression, instability occurs for largest J at the minimum considered value of B′

0 ¼ 0; in tension,
instability occurs for smallest J at the maximum considered value of B′

0 ¼ 8.

3.4. Simple shear

For uniform simple shear of magnitude γ in the X1–X2 plane, let

x1 ¼ X1 þ γX2; x2 ¼ X2; x3 ¼ X3; ∂Kγ ¼ 0; ð3:62Þ

F ¼ ½FiJ � ¼
1 γ 0
0 1 0
0 0 1

2
64

3
75; F−1 ¼ ½F−1Ij � ¼

1 −γ 0
0 1 0
0 0 1

2
64

3
75; ð3:63Þ

E¼ ½EIJ � ¼
1
2

0 γ 0
γ γ2 0
0 0 0

2
64

3
75; D¼ ½DIJ � ¼

1
2

−γ2 γ 0
γ 0 0
0 0 0

2
64

3
75: ð3:64Þ

In this case, J ¼ det F ¼ 1⇔V ¼ V0, and nonzero strain components are E2 ¼ 1
2 γ

2 and E6 ¼ 2E12 ¼ γ or D1 ¼ − 1
2 γ

2 and
D6 ¼ 2D12 ¼ γ. Specifically considered here is shearing along a 〈100〉 direction on a f010g plane, wherein both referential and
spatial Cartesian coordinate axes are aligned parallel to cubic axes of the undeformed crystal lattice. Energy densities per
unit volume in (3.17) and (3.18) reduce to

Ψ =B0 ¼
1

2B0
γ2 C44 þ

1
4
C11 þ

1
2
C144

� �
γ2 þ 1

24
C111γ

4
� �

¼ 3
2
γ2

1−2ν
2ð1−AÞð1þ νÞ þ

1−ν
4ð1þ νÞ−

9
70

B′
0

� �
γ2−

3
56

B′
0γ

4
� �

; ð3:65Þ

Ψ̂ =B0 ¼
1

2B0
γ2 C44 þ

1
4
C11−

1
2
Ĉ155

� �
γ2−

1
24

Ĉ111γ
4

� �
¼ 3

2
γ2

1−2ν
2ð1−AÞð1þ νÞ þ

1−ν
4ð1þ νÞ þ

9
70

ðB′
0−4Þ

� �
γ2 þ 3

56
ðB′

0−4Þγ4
� �

:

ð3:66Þ



Fig. 6. Normalized energy density under simple shear for (a) variable A, (b) variable ν and (c) variable B′0.
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Normalized energy densities Ψ =B0 and Ψ̂ =B0 are shown in Fig. 6(a) for several values of A (with fixed B′
0 ¼ 4 and ν¼ 1

4), in
Fig. 6(b) for several values of ν (with fixed B′

0 ¼ 4 and A¼0), and in Fig. 6(c) for several values of B′
0 (with fixed ν¼ 1

4 and
A¼0), over the shear strain range 0≤γ≤0:8. As shown in Fig. 6(a) and (b), when B′

0 ¼ 4, as γ becomes large, energy may
decrease and even become unrealistically negative for Lagrangian theory. As shown in Fig. 6(c), under simple shear, Ψ with
B′
0 ¼ 0 is equal to Ψ̂ with B′

0 ¼ 4, and Ψ with B′
0 ¼ 4 is equal to Ψ̂ with B′

0 ¼ 0, as can be verified by inspection of (3.65) and
(3.66). For γ≳0:45, Ψ can become unrealistically negative (indicating unstable behavior) in Lagrangian theory for B′

0≥4 and
in Eulerian theory for B′

0 ¼ 0.
First consider Lagrangian theory based on strain measure E. In Voigt notation, nonzero second Piola–Kirchhoff stress

components Sα ¼ ∂Ψ =∂Eα are

S1 ¼
1
2
ðC12 þ C155Þγ2 þ

1
8
C112γ

4 ¼ 3
2
B0γ

2 ν

1þ ν
−

9
35

B′
0−

9
140

B′
0γ

2
� �

; ð3:67Þ

S2 ¼
1
2
ðC11 þ C155Þγ2 þ

1
8
C111γ

4 ¼ 3
2
B0γ

2 1−ν
1þ ν

−
9
35

B′
0−

9
28

B′
0γ

2
� �

; ð3:68Þ

S3 ¼
1
2
ðC12 þ C144Þγ2 þ

1
8
C112γ

4 ¼ 3
2
B0γ

2 ν

1þ ν
−

3
35

B′
0−

9
140

B′
0γ

2
� �

; ð3:69Þ

S6 ¼ C44 þ
1
2
C155γ

2
� �

γ ¼ 3
2
B0γ

1−2ν
ð1−AÞð1þ νÞ−

9
35

B′
0γ

2
� �

: ð3:70Þ

Cauchy stresses, including shear stress τ and pressure p, are

s1 ¼ S1 þ γ2S2 þ 2γS6 ¼
3
2
B0γ

2 2ð1−2νÞ þ ð1−AÞν
ð1−AÞð1þ νÞ −

9
35

B′
0 þ γ2

1−ν
1þ ν

−
117
140

B′
0−

9
28

B′
0γ

2
� �� �

; ð3:71Þ

s2 ¼ S2 ¼
3
2
B0γ

2 1−ν
1þ ν

−
9
35

B′
0−

9
28

B′
0γ

2
� �

; ð3:72Þ

s3 ¼ S3 ¼
3
2
B0γ

2 ν

1þ ν
−

3
35

B′
0−

9
140

B′
0γ

2
� �

; ð3:73Þ

τ¼ s6 ¼ S6 þ γS2 ¼
3
2
B0γ

1−2ν
ð1−AÞð1þ νÞ þ γ2

1−ν
1þ ν

−
18
35

B′
0−

9
28

B′
0γ

2
� �� �

; ð3:74Þ
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p¼−
1
2
B0γ

2 2ð1−2νÞ þ ð1−AÞð1þ νÞ
ð1−AÞð1þ νÞ −

21
35

B′
0 þ γ2

1−ν
1þ ν

−
171
140

B′
0−

9
28

B′
0γ

2
� �� �

: ð3:75Þ

When A¼0, a universal relation (Eringen, 1962) for isotropic hyperelasticity can be verified:

s1−s2 ¼
3
2
B0γ

2 1−2ν
1þ ν

þ γ2
1−ν
1þ ν

−
18
35

B′
0−

9
28

B′
0γ

2
� �� �

¼ τγ: ð3:76Þ

Now consider Eulerian theory based on strain measure D. In Voigt notation, nonzero stress components Ŝα ¼ ∂Ψ̂ =∂Dα are

Ŝ1 ¼
1
2
ð−C11 þ Ĉ155Þγ2 þ

1
8
Ĉ111γ

4 ¼ −
3
2
B0γ

2 1−ν
1þ ν

þ 9
35

ðB′
0−4Þ þ

9
28

ðB′
0−4Þγ2

� �
; ð3:77Þ

Ŝ2 ¼
1
2
ð−C12 þ Ĉ155Þγ2 þ

1
8
Ĉ112γ

4 ¼ −
3
2
B0γ

2 ν

1þ ν
þ 9
35

ðB′
0−4Þ þ

9
140

ðB′
0−4Þγ2

� �
; ð3:78Þ

Ŝ3 ¼
1
2
ð−C12 þ Ĉ144Þγ2 þ

1
8
Ĉ112γ

4 ¼ −
3
2
B0γ

2 ν

1þ ν
þ 3
35

ðB′
0−4Þ þ

9
140

ðB′
0−4Þγ2

� �
; ð3:79Þ

Ŝ6 ¼ C44−
1
2
Ĉ155γ

2
� �

γ ¼ 3
2
B0γ

1−2ν
ð1−AÞð1þ νÞ þ

9
35

ðB′
0−4Þγ2

� �
: ð3:80Þ

Cauchy stresses, including shear stress and pressure, are Cauchy stresses, including shear stress τ and pressure p, are

s1 ¼ Ŝ1 ¼−
3
2
B0γ

2 1−ν
1þ ν

þ 9
35

ðB′
0−4Þ þ

9
28

ðB′
0−4Þγ2

� �
; ð3:81Þ

s2 ¼ Ŝ2 þ γ2Ŝ1−2γŜ6 ¼−
3
2
B0γ

2 2ð1−2νÞ þ ð1−AÞν
ð1−AÞð1þ νÞ þ 9

35
ðB′

0−4Þ þ
1−ν
1þ ν

γ2 þ γ2ðB′
0−4Þ

117
140

þ 9
28

γ2
� �� �

; ð3:82Þ

s3 ¼ Ŝ3 ¼−
3
2
B0γ

2 ν

1þ ν
þ 3
35

ðB′
0−4Þ þ

9
140

ðB′
0−4Þγ2

� �
; ð3:83Þ

τ¼ s6 ¼ Ŝ6−γŜ1 ¼
3
2
B0γ

1−2ν
ð1−AÞð1þ νÞ þ

1−ν
1þ ν

γ2 þ 18
35

ðB′
0−4Þγ2 þ

9
28

ðB′
0−4Þγ4

� �
; ð3:84Þ

p¼ 1
2
B0γ

2 2ð1−2νÞ þ ð1−AÞð1þ νÞ
ð1−AÞð1þ νÞ þ 21

35
ðB′

0−4Þ þ γ2
1−ν
1þ ν

þ 171
140

ðB′
0−4Þ þ

9
28

ðB′
0−4Þγ2

� �� �
: ð3:85Þ

When A¼0, a universal relation (Eringen, 1962) for isotropic hyperelasticity can be verified:

s1−s2 ¼
3
2
B0γ

2 1−2ν
1þ ν

þ 1−ν
1þ ν

γ2 þ 18
35

ðB′
0−4Þγ2 þ

9
28

ðB′
0−4Þγ4

� �
¼ τγ: ð3:86Þ

For both Lagrangian and Eulerian theories, τ is OðγÞ and normal stresses are Oðγ2Þ.
Normalized shear stress τ=B0 for Lagrangian and Eulerian theories [(3.74) and (3.84)] are shown in Fig. 7(a) for several

values of A (with fixed B′
0 ¼ 4 and ν¼ 1

4), in Fig. 7(b) for several values of ν (with fixed B′
0 ¼ 4 and A¼0), and in Fig. 7(c) for

several values of B′
0 (with fixed ν¼ 1

4 and A¼0), over the shear strain range 0≤γ≤0:8. As shown in Fig. 7(a) and (b), when
B′
0 ¼ 4, as γ becomes large, shear stress may decrease and even become unrealistically negative for Lagrangian theory. As

shown in Fig. 6(c), under simple shear, τ of Lagrangian theory with B′
0 ¼ 0 is equal to τ of Eulerian theory with B′

0 ¼ 4, and τ
of Lagrangian theory with B′

0 ¼ 4 is equal to τ of Eulerian theory with B′
0 ¼ 0.

Under shear deformation, stiffness coefficients A and B can be calculated using (2.50), (2.51), and (2.59). Intrinsic stability
criteria (2.60) and (2.61) can then be tested by considering the necessary conditions

det½A�40⇔ΛA ¼ λminð½Aαβ�Þ=λ040; det ½B�40⇔ΛB ¼ λminð½Bαβ�Þ=λ040; ð3:87Þ
where λminð½��Þ is the minimum eigenvalue of 6� 6 matrix ½��, and λ0 ¼ λminð½Cαβ�Þ. The symmetric form of A in (3.87) is
computed with (3.61). Because (2.60) and (2.61), when used with fully symmetric 6�6 matrices ½Aαβ� and ½Bαβ�, do not
strictly apply when the deformation gradient involves rotation (i.e., when F≠FT), in applying (3.87) the substitution F-U is
applied, where U is the right stretch tensor from the polar decomposition of the simple shear deformation in (3.63) (Clayton
and Bliss, submitted for publication):

1 γ 0
0 1 0
0 0 1

2
64

3
75¼ ½RiK �½UKJ � ¼

2
ð4þγ2Þ1=2

γ

ð4þγ2Þ1=2 0
−γ

ð4þγ2Þ1=2
2

ð4þγ2Þ1=2 0

0 0 1

2
664

3
775

2
ð4þγ2Þ1=2

γ

ð4þγ2Þ1=2 0

γ

ð4þγ2Þ1=2
2þγ2

ð4þγ2Þ1=2 0

0 0 1

2
664

3
775: ð3:88Þ

With this substitution, strain energies and stresses referred to referential coordinates are unchanged, but Cauchy stress
components may differ from those presented analytically above in the absence of rotation. Table 3 shows stable domains for
shear strain, defined as γ for which either of (3.87) applies. First instability occurs for ν¼ 2

5 and A¼−1, properties



Fig. 7. Normalized shear stress for (a) variable A, (b) variable ν and (c) variable B′0.

Table 3
Stable domains for uniaxial strain over property ranges 0≤B′0≤8, 1

10≤ν≤
2
5, and −1≤A≤ 1

2.

Theory det½A�40 det½B�40

Lagrangian γo0:05 γo0:05

τ=B0o4:8� 10−3 τ=B0o4:8� 10−3

Eulerian γo0:09 γo0:09

τ=B0o7:8� 10−3 τ=B0o7:8� 10−3
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corresponding to lowest shear modulus C44. Eulerian theory is intrinsically stable to γ≈0:09 with either criteria, compared to
the significantly smaller stable domain of Lagrangian theory ðγ≲0:05Þ.
3.5. Summary of analytical results and discussion

Key aspects of results in Sections 3.2–3.4 are summarized as follows. For hydrostatic compression, for a physically
characteristic value B′

0≈4, Eulerian theory appears more realistic than Lagrangian theory, giving a pressure response closer
to the Murnaghan EOS, while Lagrangian theory fails to predict a rapidly increasing pressure at very large compression.
Similar observations have been made elsewhere (Birch, 1947, 1978; Jeanloz, 1989). For uniaxial compression, with B′

0≈4,
Eulerian theory again offers a more physically realistic representation; however, when B′

0 ¼ 0, Eulerian theory can produce
negative strain energy at large compression. For simple shear, Eulerian theory is generally more stable and provides
physically reasonable behavior (e.g., monotonically increasing energy with increasing shear strain) for B′≥4, while
Lagrangian theory predicts decreasing shear stress and strain energy at large shear for B′≥4. The above statements apply
for an ideal cubic crystal with highly symmetric anharmonic properties. Deviations may be expected for highly anisotropic
materials, as shown in Section 4.

This work is focused primarily on comparison of only two theories based on two strain measures E and D. Lagrangian
E�based theory is considered because, historically, it is the most common measure used for anisotropic crystal hyperelasticity.
Eulerian D�based theory is considered because, as shown already, it reduces to the successful Birch–Murnaghan EOS under
hydrostatic compression, and because it has been demonstrated elsewhere to accurately predict the response of anisotropic
crystals under pressure (Weaver, 1976; Perrin and Delannoy, 1978). The present work investigates, for the first time, potential
accuracy of D�based theory for loading conditions involving deviatoric stress in addition to pressure.
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An infinite number of possible strain measures exists for anisotropic hyperelasticity, e.g., constructions consisting of
stretch U raised to various exponents are possible. A likely useful strain energy potential, not considered in this work, would
depend on the logarithm of the right stretch, i.e., W ¼Wðln UÞ. This logarithmic strain is of particular interest since its
spatial counterpart, Hencky strain ln V , is useful for many isotropic solids under moderate to large deformation (Anand,
1979). For isotropic solids, the simple constitutive equality r¼ J−1∂W=∂ ln V holds, though V is not an appropriate state
variable for anisotropic solids. In contrast, W ¼Wðln UÞ is appropriate for anisotropic hyperelasticity, and though not often
encountered in the literature, was considered in Dlużewski (2000). In that work Dlużewski (2000), transformation formulae
among third-order elastic constants for Green elasticity and logarithmic elasticity were derived, and it was shown that the
latter tend to be smaller in magnitude for several cubic crystals, suggesting greater accuracy of polynomial energy functions
depending on ln U than E when truncated at a certain order. Whether or not ln U�based theory is more accurate than
D�based theory remains an open question that may be answered in future work; superiority of one measure over another
likely will depend on particular material and loading regime. Since both ln U and D increase rapidly in magnitude with
increasing compression, a polynomial series for strain energy in either strain measure should account well for the rapid
increase in energy, pressure, and stiffness observed in most solids at large compression. Computation of ln U , for example
via usual algorithms requiring matrix diagonalization, is generally more cumbersome than D, which requires only inversion
of F . Computation of derivatives such as ∂ ln U=∂F needed for stress, tangent stiffness, and various thermodynamic
identities, is possible but generally tedious (Jog, 2009).

4. Shock compression of low-symmetry crystals

Considered in what follows next is the material response under loading by an ideal planar shock wave. Crystals with
homogeneous properties but of arbitrary anisotropy are addressed, i.e., simplifying assumptions made in Section 3.1 on
material symmetry are removed. Generic analytical solutions using nonlinear elastic theories based on strain measures E
(Lagrangian) and D (Eulerian) are derived in Section 4.1. Specific materials–quartz, sapphire, and diamond–towards which
the theories are applied, and requisite thermoelastic properties are presented in Section 4.2. Results of the model as applied
to these materials are discussed in Section 4.3, with additional new developments in Section 4.4.

4.1. General 1-D solutions

A shock wave is represented mathematically as a propagating surface across which there may exist jump discontinuities
in mass density, particle velocity, strain, stress, entropy, temperature, and internal energy. Considered here are 1-D (i.e,
normal or longitudinal) shocks. Quantities associated with material ahead of the shock are labeled with superscript +, with
material behind superscript −. Material ahead of the shock is assumed to be at rest, undeformed, unstressed, and at ambient
reference temperature θ0. The jump in an arbitrary quantity ð � Þ across the shock is written as

1ð � ÞU¼ ð�Þ−−ð�Þþ: ð4:1Þ
In derivations that follow, the shock moves at steady natural velocity D in the X ¼ X1 direction. The deformation gradient is
uniaxial strain of the form

F− ¼ ½FiJ �− ¼
F 0 0
0 1 0
0 0 1

2
64

3
75¼

1þ ξ 0 0
0 1 0
0 0 1

2
64

3
75; Fþ ¼ 1: ð4:2Þ

Behind the shock, with x¼ x−1 and u¼ u−
1 the longitudinal particle coordinate and displacement,

F ¼ ∂x
∂X

¼ 1þ ∂u
∂X

¼ 1þ ξ¼ J− ¼ V−

V0
¼ ρ0

ρ−
; ξ¼ ∂u=∂X: ð4:3Þ

In the present work attention is restricted to compressive shocks, for which 0oF≤1 and −1oξ≤0, moving with positive
velocity D40. The only nonzero components of Lagrangian and Eulerian strain are, respectively,

E¼ E−11 ¼
1
2
ðF2−1Þ ¼ ξ 1þ 1

2
ξ

� �
; D¼D−

11 ¼
1
2
ð1−F−2Þ ¼ 1

2
1−

1
ð1þ ξÞ2

" #
: ð4:4Þ

Longitudinal force per unit reference area (or equivalently, current area under uniaxial strain) behind the shock is, positive
in compression,

P ¼−P−
11 ¼−JðF−11k s1kÞ− ¼−s−11: ð4:5Þ

Though often referred to as “Hugoniot pressure”, stress P is generally not equal to hydrostatic pressure p¼− 1
3skk in a solid

with shear strength.
Let ρ¼ ρ− and υ¼ υ−1 denote mass density and particle velocity in the shocked state. Conservation laws for mass, linear

momentum, and energy–often referred to as Rankine–Hugoniot equations– can be written, respectively, as (Thurston, 1974;
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McQueen et al., 1970)

ρ0D¼ ρðD−υÞ⇔ξ¼ −υ=D; ð4:6Þ

P ¼ ρ0Dυ⇒ρ0D
2 ¼−P=ξ⇔ρ0υ

2 ¼ −Pξ; ð4:7Þ

Pυ¼Dð12 ρ0υ2 þ 1UUÞ⇒1UU¼ 1
2ρ0υ

2: ð4:8Þ
From (4.6), requiring 1≥J40 leads to constraints D4υ≥0. In energy balance (4.8), the usual adiabatic assumption of null
heat conduction has been used, which is thought appropriate for elastic materials (Thurston, 1974) as well as relatively weak
shocks in elastic–plastic solids (Perrin and Delannoy-Coutris, 1983), but may not be valid for overdriven shocks in elastic–
plastic materials (Wallace, 1981). The shock process is neither isothermal nor isentropic; the entropy inequality can be
written as (Germain and Lee, 1973)

1η=ρ0U≥0⇒1ηU≥0: ð4:9Þ
Subsequent derivations rely on internal energy-based constitutive models U ðE; ηÞ and Û ðD; ηÞ of (2.72) and (2.73).

Derivatives of these functions with respect to strain depend only on entropy changes Δη from the reference state and hence
are independent of η0 ¼ ηþ. Furthermore, stress and temperature depend only on derivatives of internal energy with respect
to strain and entropy, and hence are independent of U0. Therefore, to simplify forthcoming derivations, let

U0 ¼Uþ ¼ 0; η0 ¼ ηþ ¼ 0⇒1UU¼ U− ¼ U; 1ηU¼ η− ¼Δη¼ η; ð4:10Þ

θþ ¼ ð∂U=∂ηÞþ ¼ θ0; θ− ¼ ð∂U=∂ηÞ− ¼ θ⇒1θU¼ θ−−θþ ¼ θ−θ0 ¼Δθ: ð4:11Þ
Stress components thermodynamically conjugate to E or D are related to P via

P ¼−F1JSJ1 ¼−FS ¼−ð1þ ξÞS; S ¼ S11 ¼ ∂U=∂E11 ¼ ∂U=∂E; ð4:12Þ

P ¼−J−1F−11I F
−1
1J Ŝ IJ ¼−F−3Ŝ ¼ −ð1þ ξÞ−3Ŝ; Ŝ ¼ Ŝ11 ¼ ∂Û=∂D11 ¼ ∂Û=∂D; ð4:13Þ

where all quantities are evaluated in the material behind the shock.
The following binomial series (Spiegel and Liu, 1999) proves useful, where a is a non-negative constant:

ðaþ f Þn ¼ an þ nan−1f þ nðn−1Þ
2!

an−2f 2 þ nðn−1Þðn−2Þ
3!

an−3f 3

þnðn−1Þðn−2Þðn−3Þ
4!

an−4f 4 þ nðn−1Þðn−2Þðn−3Þðn−4Þ
5!

an−5f 5 þ⋯: ð4:14Þ

Let a¼1. From (4.4), selecting roots corresponding to ξ¼ 0 at E¼D¼ 0,

ξ¼−1þ ð1þ 2EÞ1=2 ¼−1þ ð1−2DÞ−1=2: ð4:15Þ
From (4.14), with n¼ 1

2 and f ¼ 2E, the displacement gradient in the shocked state is

ξ¼ E−1
2 E

2 þ 1
2 E

3−5
8 E

4 þ 7
8E

5−⋯: ð4:16Þ
Similarly, letting n¼− 1

2 and f ¼−2D,

ξ¼Dþ 3
2 D

2 þ 5
2 D

3 þ 35
8 D4 þ 63

8D
5 þ⋯: ð4:17Þ

Finally, letting n¼ 3
2 and f ¼−2D,

ð1þ ξÞ−3 ¼ ð1−2DÞ3=2 ¼ 1−3Dþ 3
2 D

2 þ 1
2 D

3 þ 3
8 D

4 þ 3
8D

5 þ⋯: ð4:18Þ
The above series are valid for −1o f≤1, which correspond to 0:7≲V=V0≲1:7. Using (4.7), (4.10), (4.12), and (4.16), the second
of (4.8) becomes, in terms of E,

U ¼−1
2 Pξ¼ 1

2 Sξð1þ ξÞ ¼ 1
2 SðE þ 1

2 E
2−1

2 E
3 þ 5

8 E
4−7

8E
5 þ⋯Þ: ð4:19Þ

Using (4.7), (4.10), (4.13), (4.17), and (4.18), the second of (4.8) becomes, alternatively in terms of D,

U ¼−1
2 Pξ¼ 1

2 Ŝξð1þ ξÞ−3 ¼ 1
2 ŜðD−3

2 D
2−1

2 D
3−3

8 D
4−3

8D
5−⋯Þ: ð4:20Þ

Internal energy functions (2.72) and (2.73)–using (2.81) and specialized to the present uniaxial strain conditions with
(2.74), (2.77), and (4.10), and extended to fourth order in strain and second order in entropy–are

U ðE; ηÞ ¼ 1
2
C11E

2 þ 1
6
C111E

3 þ 1
24

C1111E
4−θ0 Γ1Eηþ

1
2
Γ′1Eη2 þ

1
2
Γ11E

2η

� �
þ θ0η 1þ 1

2c0
η

� �
; ð4:21Þ

Û ðD; ηÞ ¼ 1
2
C11D

2 þ 1
6
Ĉ111D

3 þ 1
24

Ĉ1111D
4−θ0 Γ1Dηþ

1
2
Γ′1Dη2 þ

1
2
Γ̂11D

2η

� �
þ θ0η 1þ 1

2c0
η

� �
: ð4:22Þ
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Elastic constants in (4.21) and (4.22) are isentropic, and Voigt notation is used. The following simplified notation has been
used for material constants referred to the reference state, upon consideration of (B.3) and (B.2),

C11 ¼C
η
011 ¼ Ĉ

η

011; Γ1 ¼ Γ01 ¼ Γ̂01; Γ′1 ¼ Γ ′01 ¼ Γ̂ ′01: ð4:23Þ
Third- and fourth-order isentropic elastic constants with respect to strain measures E and D are written as

C111 ¼C
η
0111; C1111 ¼C

η
01111; Ĉ111 ¼ Ĉ

η

0111; Ĉ1111 ¼ Ĉ
η

01111: ð4:24Þ
From (B.(5), B.10), and a similar derivation applied to fourth-order elastic constants, higher-order longitudinal constants are
related by

Γ̂11 ¼ Γ11 þ 4Γ1; Ĉ111 ¼C111 þ 12C11; Ĉ1111 ¼C1111−18C111−318C11: ð4:25Þ
Longitudinal stress and temperature in the shocked state are, for Lagrangian theory,

S ¼ ∂U=∂E¼C11E þ 1
2 C111E

2 þ 1
6 C1111E

3−θ0ηðΓ1 þ Γ11E þ 1
2Γ′1ηÞ; ð4:26Þ

θ¼ ∂U=∂η¼ θ0ð1þ η=c0−Γ1E−Γ′1Eη−1
2Γ11E

2Þ; ð4:27Þ
and for Eulerian theory

Ŝ ¼ ∂Û=∂D¼C11Dþ 1
2 Ĉ111D

2 þ 1
6 Ĉ1111D

3−θ0ηðΓ1 þ Γ̂11Dþ 1
2Γ′1ηÞ; ð4:28Þ

θ¼ ∂Û=∂η¼ θ0ð1þ η=c0−Γ1D−Γ′1Dη−1
2Γ̂11D

2Þ: ð4:29Þ
Consider Lagrangian theory. Substitution of (4.26) into (4.19), with U ¼ U , gives

U ¼ −1
2 fθ0ηðΓ1 þ 1

2 Γ′1ηÞgE þ 1
2 fC11−θ0η½12 ðΓ1 þ 1

2 Γ′1ηÞ þ Γ11�gE2 þ 1
4 fC11 þ C111 þ θ0η½ðΓ1 þ 1

2Γ′1ηÞ−Γ11�gE3

þ 1
24 f−6C11 þ 3C111 þ 2C1111−θ0η½152 ðΓ1 þ 1

2Γ′1ηÞ−6Γ11�gE4

þ 1
48 f15C11−6C111 þ 2C1111 þ θ0η½21ðΓ1 þ 1

2Γ′1ηÞ−15Γ11�gE5 þ⋯: ð4:30Þ

Eqs. (4.21) and (4.30) can be treated as two equations in two unknowns U and η, and can, in principle, yield a solution for
entropy jump 1ηU¼ η− ¼ η in terms of strain, i.e., η¼ ηðEÞ. For the strain energy function U in (4.21) that is quadratic in
entropy, such a solution for η can most readily be obtained using numerical methods when ξ¼ ðV−V0Þ=V0 is prescribed.
With η so obtained, longitudinal stresses S and P can then be acquired immediately using (4.26) and (4.12), noting that
F ¼ 1þ ξ¼ ð1þ 2EÞ1=2.

When U is a linear function of entropy, then a solution for ηðEÞ can be obtained analytically in closed form (Thurston,
1974). In this simplified case, most valid for ðc−10 −Γ′1EÞη⪡2, (4.21) and (4.30) reduce to

U ¼ 1
2 C11E

2 þ 1
6 C111E

3 þ 1
24 C1111E

4−θ0ðΓ1E þ 1
2Γ11E

2Þηþ θ0η ð4:31Þ
and

U ¼ −1
2 fθ0Γ1ηgE þ 1

2 fC11−θ0η½12 Γ1 þ Γ11�gE2 þ 1
4fC11 þ C111 þ θ0η½Γ1−Γ11�gE3

þ 1
24 f−6C11 þ 3C111 þ 2C1111−θ0η½152 Γ1−6Γ11�gE4 þ 1

48f15C11−6C111 þ 2C1111 þ θ0η½21Γ1−15Γ11�gE5 þ⋯: ð4:32Þ

Writing ηðEÞ as a polynomial with constant coefficients a0; a1; a2;…,

η¼ a0 þ a1E þ a2E
2 þ a3E

3 þ a4E
4 þ a5E

5 þ⋯: ð4:33Þ
Substituting (4.33) into (4.31) and (4.32), equating coefficients of like powers of E up to order 5, and noting that η0 ¼ ηð0Þ ¼ 0
from convention (4.10),

a0 ¼ a1 ¼ a2 ¼ 0; a3 ¼ 1
12θ

−1
0 ð3C11 þ C111Þ; ð4:34Þ

a4 ¼ 1
24θ

−1
0 ½−6C11 þ 3C111 þ C1111 þ Γ1ð3C11 þ C111Þ�; ð4:35Þ

a5 ¼ 1
48θ

−1
0 ½15C11−6C111 þ 2C1111 þ Γ1ð−9C11 þ 2C111 þ C1111Þ þ Γ2

1ð3C11 þ C111Þ�: ð4:36Þ
Substitution of entropy jump ηðEÞ ¼1ηU, now known to fifth order in strain, into (4.26), (4.27), (4.12), and Hugoniot
equations (4.6)–(4.8) then gives the longitudinal stresses, internal energy jump, particle velocity, shock velocity, and
temperature completely in terms of E:

S ¼C11E þ 1
2 C111E

2 þ ð16C1111−θ0Γ1a3ÞE3−θ0ðΓ1a4 þ Γ11a3ÞE4−θ0ðΓ1a5 þ Γ11a4ÞE5; ð4:37Þ

P ¼−ð1þ 2EÞ1=2S; 1UU¼ 1
2S½ð1þ 2EÞ−ð1þ 2EÞ1=2�; ð4:38Þ

υ¼ fðS=ρ0Þ½ð1þ 2EÞ−ð1þ 2EÞ1=2�g1=2; ð4:39Þ
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D¼ fðS=ρ0Þ½ð1þ 2EÞ−ð1þ 2EÞ1=2�g1=2½1−ð1þ 2EÞ1=2�−1; ð4:40Þ

θ¼ θ0ð1−Γ1E−1
2Γ11E

2Þ: ð4:41Þ

Now consider Eulerian theory. Substitution of (4.28) into (4.20), with U ¼ Û , gives

Û ¼−1
2 fθ0ηðΓ1 þ 1

2 Γ′1ηÞgDþ 1
2 fC11 þ θ0η½32 ðΓ1 þ 1

2 Γ′1ηÞ−Γ̂11�gD2 þ 1
4 f−3C11 þ Ĉ111 þ θ0η½ðΓ1 þ 1

2Γ′1ηÞ þ 3Γ̂11�gD3

þ 1
24 f−6C11−9Ĉ111 þ 2Ĉ1111 þ θ0η½92 ðΓ1 þ 1

2 Γ′1ηÞ þ 6Γ̂11�gD4 þ 1
48 f−9C11−6Ĉ111−6Ĉ1111 þ θ0η½9ðΓ1 þ 1

2Γ′1ηÞ þ 9Γ̂11�gD5 þ⋯:

ð4:42Þ
Eqs. (4.22) and (4.42) are two equations in two unknowns U and η, and can yield a solution for entropy jump η¼ ηðDÞ. For Û in
(4.22) that is quadratic in entropy, such a solution can most readily be obtained using numerical methods when ξ is prescribed.
Longitudinal stresses Ŝ and P can then be acquired immediately using (4.22) and (4.42), noting that F ¼ 1þ ξ¼ ð1−2DÞ−1=2.

When Û is a linear function of entropy, then a solution for ηðDÞ can be obtained analytically in closed form. In this
simplified case, most valid for ðc−10 −Γ′1DÞη⪡2, (4.22) and (4.42) reduce to

Û ¼ 1
2 C11D

2 þ 1
6 Ĉ111D

3 þ 1
24 Ĉ1111D

4−θ0ðΓ1Dþ 1
2Γ̂11D

2Þηþ θ0η ð4:43Þ

and

Û ¼ −1
2 fθ0ηΓ1gDþ 1

2 fC11 þ θ0η½32 Γ1−Γ̂11�gD2 þ 1
4f−3C11 þ Ĉ111 þ θ0η½Γ1 þ 3Γ̂11�gD3

þ 1
24 f−6C11−9Ĉ111 þ 2Ĉ1111 þ θ0η½92 Γ1 þ 6Γ̂11�gD4 þ 1

48f−9C11−6Ĉ111−6Ĉ1111 þ θ0η½9Γ1 þ 9Γ̂11�gD5 þ⋯: ð4:44Þ

Writing ηðDÞ as a polynomial with constant coefficients b0;b1; b2;…,

η¼ b0 þ b1Dþ b2D
2 þ b3D

3 þ b4D
4 þ b5D

5 þ⋯: ð4:45Þ
Substituting (4.45) into (4.43) and (4.44), equating coefficients of like powers of D up to order 5, and noting that η0 ¼ ηð0Þ ¼ 0
from convention (4.10),

b0 ¼ b1 ¼ b2 ¼ 0; b3 ¼ 1
12θ

−1
0 ð−9C11 þ Ĉ111Þ; ð4:46Þ

b4 ¼ 1
24θ

−1
0 ½−6C11−9Ĉ111 þ Ĉ1111 þ Γ1ð−9C11 þ Ĉ111Þ�; ð4:47Þ

b5 ¼ 1
48θ

−1
0 ½−9C11−6Ĉ111−6Ĉ1111 þ Γ1ð−33C11−6Ĉ111 þ Ĉ1111Þ þ Γ2

1ð−9C11 þ Ĉ111Þ�: ð4:48Þ

Notice that a3 ¼ b3. Substitution of entropy jump ηðDÞ ¼1ηU, now known to fifth order in strain, into (4.28), (4.29), (4.13),
and Hugoniot equations (4.6)–(4.8) then gives the longitudinal stresses, internal energy jump, particle velocity, shock
velocity, and temperature completely in terms of D:

Ŝ ¼C11Dþ 1
2 Ĉ111D

2 þ ð16Ĉ1111−θ0Γ1b3ÞD3−θ0ðΓ1b4 þ Γ̂11b3ÞD4−θ0ðΓ1b5 þ Γ̂11b4ÞD5; ð4:49Þ

P ¼−ð1−2DÞ3=2Ŝ; 1UU¼ 1
2Ŝ½ð1−2DÞ−ð1−2DÞ3=2�; ð4:50Þ

υ¼ fðŜ=ρ0Þ½ð1−2DÞ−ð1−2DÞ3=2�g
1=2

; ð4:51Þ

D¼ fðŜ=ρ0Þ½ð1−2DÞ−ð1−2DÞ3=2�g
1=2½1−ð1−2DÞ−1=2�−1; ð4:52Þ

θ¼ θ0ð1−Γ1D−1
2Γ̂11D

2Þ: ð4:53Þ

From (4.37) and (4.49), contributions to stresses S and Ŝ from entropy production are OðE3Þ and OðD3Þ, respectively. The
foregoing analytical solution for the elastic shock response in Lagrangian theory was derived by Thurston (1974); the
analogous full and detailed derivation for Eulerian theory has not appeared elsewhere, to the author's knowledge.

In order to apply the above solutions to particular materials, the following six independent constants are needed at the
unstressed ambient state at temperature θ0: isentropic elastic constants C11;C111;C1111; Grüneisen parameters Γ1;Γ11; and
mass density ρ0. Higher-order constants in the Eulerian theory (Ĉ111; Ĉ1111; Γ̂11) can be obtained from those of Lagrangian
theory via (4.25), or vice versa, or each set can be fit independently to material data.

In the application that follows in Section 4.2 in which Lagrangian and Eulerian elasticity theories are compared, greatest
emphasis is placed on evaluation of the mechanical, rather than thermal, response, consistent with internal energy
functions (4.31) and (4.43) quartic in strain but linear in entropy. Note from (2.37) that thermal expansion coefficients in the
reference state are equivalent in Lagrangian and Eulerian theories:

α̂0IJ ¼ α0IJ ¼ αIJ2α̂0α ¼ α0α ¼ αα: ð4:54Þ



J.D. Clayton / J. Mech. Phys. Solids 61 (2013) 1983–2014 2005
Perhaps most often measured is specific heat at constant stress/pressure cS0 ¼ cSð0; θ0Þ, which can be used in (2.43) to obtain
c0 ¼ cð0; θ0Þ:

c0 ¼ cS0−θ0αααβC
θ
0αβ; Cθ

0αβ ¼Cαβ−ðθ0=c0Þβ0αβ0β; ð4:55Þ

where second-order isothermal elastic constants are obtained from isentropic constants Cαβ via (2.46). Grüneisen
parameters can be calculated from second-order elastic constants, specific heat, and thermal expansion coefficients
(Thurston, 1974; Clayton, 2011a):

Γα ¼ β0α=c0 ¼Cθ
0αβαβ=c0 ¼Cαβαβ=cS0: ð4:56Þ

Experimental measurements of higher-order Grüneisen parameters are scarce. A typical assumption (Wallace, 1980) for
weak shocks in crystals is ρΓ IJ≈ρ0Γ0IJ , which yields

J−1Γ IJ ¼ constant⇒∂Γ IJ=∂EKL ¼−JΓ IJð∂J−1=∂EKLÞ ¼ F−1iK F−1iL Γ IJ

⇒Γ IJKL ¼ 1
2 ð∂Γ IJ=∂EKL þ ∂ΓKL=∂EIJÞj0≈1

2ðΓ0IJδKL þ Γ0KLδIJÞ: ð4:57Þ

For constant specific heat, positive Γαβ correlates decreasing second-order elastic coefficients with increasing temperature.
For a cubic crystal with scalar Grüneisen parameter Γ ¼ 1

3ΓKK , this assumption corresponds to ð∂ ln Γ=∂ ln VÞj0 ¼ 1.
Isentropic third-order constants Cαβγ can be computed at the reference state from mixed third-order constants C

η;θ
αβγ

measured in ultrasonic experiments using the relation (Brugger, 1964)

Cαβγ ¼C
η;θ
αβγ þ θ0Γγ ½Cη;θ

αβδαδ−ð∂C
η
αβ=∂θÞj0�: ð4:58Þ

The difference between isentropic and mixed coefficients is often smaller than uncertainty in experimental measurements
of either. In summary, the five parameters C11;C111;C1111;Γ1;Γ11 can be calculated for a material of arbitrary symmetry
using the above relations given C1β and αβ (where β¼ 1;2;…6), cS0, ∂C

η
11=∂θ, C

η;θ
111, and C1111. Experimental values exist for a

number of crystals for all parameters except C1111; reported measurements of the latter are scarce.

4.2. Materials

The theory and analytical solutions derived in Section 4.1 are applied to analyze shock compression behavior of single
crystals of three hard minerals: quartz (α�SiO2), sapphire (α�Al2O3 or corundum), and diamond (C). These materials are
considered because their ratios of Hugoniot Elastic Limit (HEL) to longitudinal elastic moduli are relatively large, meaning
that elastic deformations in excess of several percent volumetric compression can be achieved in uniaxial compression prior
to activation of any inelastic deformation mechanisms that could render the analysis of Section 4.1 physically unrealistic. In
contrast, the nonlinear elastic analysis of Section 4.1 could be applied to more ductile materials with a lower HEL–e.g.,
metals that undergo plastic slip or deformation twinning–but would be physically realistic only at smaller compressions
where effects of higher-order moduli may be less evident. Above the HEL, closed-form analytical solutions for anisotropic
solids become intractable because neither elastic nor plastic deformation are one-dimensional, and entropy production from
inelasticity can be substantial. Quartz, sapphire, and diamond also belong to the limited set of anisotropic crystals whose
third- and fourth-order elastic constants have been reported.

Specifically, analytical solutions are compared for anisotropic nonlinear elastic uniaxial shock compression involving
internal energy functions (4.31) and (4.43) (Lagrangian and Eulerian theories, respectively) incorporating elastic constants
up to fourth order. Quartz and sapphire have trigonal (i.e., rhombohedral) symmetry. Quartz is analyzed for compression
along the a-axis (X-cut, ½1210�), b-axis (Y-cut, ½1010�) and c-axis (Z-cut, ½0001�); sapphire is analyzed for compression along
the a-axis (X-cut) and c-axis (Z-cut). Diamond is cubic and is analyzed for compression along a cube axis (X-cut, ½100�).
Elastic constants are interchanged as needed for consistency with notation of Section 4.1. For example, for c-axis (i.e., Z-cut)
uniaxial shock compression, the analysis of Section 4.1 remains valid with C11 replaced by C33, C111 by C333, Γ1 by Γ3, etc.

Requisite material properties are listed in Table 4 corresponding to an ambient temperature of 295 K. Isentropic second-
order elastic constants for all three materials are obtained from experiment (McSkimin et al., 1965, 1972; Hankey and
Schuele, 1970), mixed third-order constants are obtained for quartz and sapphire from experiment (Thurston et al., 1966;
Hankey and Schuele, 1970) and then converted to isentropic constants using (4.58). Fourth-order Lagrangian constants
shown for quartz and sapphire are reported from fits to shock compression experiments (Fowles, 1967; Graham, 1972a) and
are inherently adiabatic. Quartz is piezoelectric; constants listed correspond to open-circuit conditions (i.e., constant electric
displacement). For diamond, third- and fourth-order constants are obtained verbatim from quantum mechanical
calculations (Nielsen, 1986); no attempt is made to adjust these for finite temperature. Grüneisen parameters are calculated
via (4.56) and (4.57) using experimentally determined specific heats at constant pressure (McSkimin et al., 1965; Furukawa
et al., 1956; DeSorbo, 1953), linear thermal expansion coefficients (McSkimin et al., 1965; Burghartz and Schulz, 1994; Slack
and Bartram, 1975), and isentropic second-order elastic constants. For quartz and sapphire, third-order Eulerian coefficients
Ĉ111 are obtained using conversion (4.25). As discussed later in Section 4.3, fourth-order Eulerian constants Ĉ1111 for quartz
and sapphire are fit to shock velocity versus particle velocity data (Fowles, 1967; Graham and Brooks, 1971) keeping third-
order elastic constants fixed, following the same procedure used for C1111.Fitting this constant independently rather than
using the last of (4.25) provides for the most fair comparison of fourth-order Lagrangian and Eulerian theories. For diamond,



Table 4
Physical properties of single crystals (θ0 ¼ 295 K; ρ0 in g/cm3; Cαβ… in GPa).

Property Quartz (X) Quartz (Y) Quartz (Z) Sapphire (X) Sapphire (Z) Diamond (X)

C11 87.6 87.6 106 497 498 1079
C111 −211 −333 −814 −3870 −3340 −6300

Ĉ111 840 718 455 2090 2640 5570

C1111 15 930 15 930 18 490 50 000 50 000 43 600

Ĉ1111 15 000 10 500 6500 10 000 20 000 16 300

Γ1 ¼ Γ11 0.74 0.74 0.58 1.29 1.29 0.81

Γ̂11 3.70 3.70 2.90 6.43 6.46 4.04
PHEL=C11 0.10 0.10 0.15 0.05 0.05 0.08
ρ0 2.65 3.98 3.51
B′0 6.3 4.2 4.0

Fig. 8. Predicted and experimental (Fowles, 1967) shock velocity versus particle velocity for quartz, normalized by linear elastic wave speed C0: (a) X- and
Y-cut and (b) Z-cut.
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Eulerian higher-order constants Ĉ111 and Ĉ1111 are again taken verbatim from Nielsen (1986), where they have been
obtained by fitting numerical data directly rather than using (4.25). For each material, pressure derivatives of bulk modulus
B′
0 (Thurston et al., 1966; Nielsen, 1986; Clayton, 2009) are also listed. Finally, maximum HEL stresses PHEL from shock

experiments (Wackerle, 1962; Fowles, 1967; Graham, 1972b; Lang and Gupta, 2010) are shown for reference, normalized by
second-order moduli for shocks in corresponding directions. The domain of validity of elastic analysis can be estimated as
V=V0≳ðC11−PHELÞ=C11.

4.3. Results and discussion

Predicted shock velocity D versus particle velocity υ is compared with experimental shock compression data of Fowles
(1967) in Fig. 8 for X-, Y-, and Z-cut quartz specimens. Experimental data are obtained from plane-wave explosive loading
tests in which two-wave structures were often recorded (Fowles, 1967). Data considered here correspond only to the first,
elastic shock wave in such tests. Velocities are normalized by longitudinal linear elastic wave speed

C0 ¼ ðC11=ρ0Þ1=2: ð4:59Þ
Lagrangian fourth-order constant C1111 for each orientation (Table 4) was fit to the data in Fowles (1967). Eulerian fourth-
order constant Ĉ1111 in Table 4 has been fit to this same data in an analogous fashion here. Both Lagrangian and Eulerian fits
are considered adequate for each orientation. The unusual nonlinearity (i.e., curvature) in the D–υ data was noted in Fowles
(1967); Eulerian theory predicts relationships with greater curvature. Hugoniot stress (i.e., P) normalized by C11 is shown for
each orientation in Fig. 9, along with experimental data (Fowles, 1967). Predictions marked “4th order” are obtained using
complete solutions and all material constants. Predictions marked “3rd order” assume C1111 ¼ 0 or Ĉ1111 ¼ 0. Predictions
marked “2nd order” assume C111 ¼C1111 ¼ 0 or Ĉ111 ¼ Ĉ1111 ¼ 0. These designations apply for respective Lagrangian or
Eulerian solutions. Predictions marked “2nd order mixed” are discussed later in Section 4.4. For each orientation, 4th order
theories are required to accurately match the experimental Hugoniot data; 2nd and 3rd order models are insufficient.

Predicted shock velocity D versus particle velocity υ is compared with experimental shock compression data of Graham
and Brooks (1971) in Fig. 10 for X- and Z-cut sapphire. Experimental data are obtained from flyer-plate and plane-wave
explosive loading configurations; in the latter, two-wave structures were sometimes generated (Graham and Brooks, 1971).
Data considered here correspond only to the elastic shock, with the secondary, slower “plastic” wave in which the HEL was



Fig. 9. Predicted and experimental (Fowles, 1967) Hugoniot stress for quartz, normalized by longitudinal second-order elastic constant C11: (a) X-cut,
(b) Y-cut and (c) Z-cut.

Fig. 10. Predicted and experimental (Graham and Brooks, 1971) shock velocity versus particle velocity for sapphire, normalized by linear elastic wave speed C0.

Fig. 11. Predicted and experimental (Graham and Brooks, 1971) Hugoniot stress for sapphire, normalized by longitudinal second-order elastic constant C11:
(a) X-cut and (b) Z-cut.

J.D. Clayton / J. Mech. Phys. Solids 61 (2013) 1983–2014 2007
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exceeded not addressed. Velocities are normalized by wave speed (4.59). Lagrangian fourth-order constant C1111 for each
orientation (Table 4) was fit to this experimental data in Graham (1972a). Eulerian fourth-order constant Ĉ1111 in Table 4 has
been fit to this same data here. Considering scatter in the data, both Lagrangian and Eulerian fits are adequate for each
orientation, giving nearly linear D–υ curves over the relatively small compression range for which sapphire remains elastic
ðV=V0≳0:95Þ. Hugoniot stress (i.e., P) normalized by C11 is shown for each orientation in Fig. 11, along with experimental
data (Graham and Brooks, 1971). For each orientation, 3rd and 4th order Lagrangian and Eulerian theories are all capable of
accurately matching the experimental stress data. Sufficiency of 3rd order Lagrangian theory was also noted in previous
work (Clayton, 2009). Second-order elastic models are inaccurate, with 2nd order Eulerian theory too stiff and 2nd order
Lagrangian theory too compliant.

For predictions of the shock response of diamond, all higher-order elastic constants in Table 4 have been taken
directly from the quantum mechanical results of Nielsen (1986) since experimental measurements of third-order
constants of diamond apparently have not been reported. Predictions of normalized shock velocity and Hugoniot
stress are given in Fig. 12(a) and (b), respectively, compared with experimental data of Lang and Gupta (2010). These
data, obtained from flyer-plate experiments, consist of five tests for which a high HEL was observed (peak shock
pressures of ≈90 GPa) and six corresponding to peak shock pressures in excess of ≈115 GPa, which demonstrated a
marked reduction in HEL strength (Lang and Gupta, 2010). No fitting or adjustment of third- or fourth-order
Lagrangian or Eulerian constants has been undertaken, so the comparison of results can be deemed as much a
confirmation of accuracy of atomic calculations as a test of relative merits of Lagrangian and Eulerian theories of
various orders. From Fig. 12(a), 4th order Lagrangian theory provides a better fit to shock velocity than 4th order
Eulerian theory at larger particle velocities corresponding to the higher HEL, with 4th order Eulerian theory tending
to overestimate D. Conversely, at smaller particle velocities corresponding to the lower HEL, 4th order Eulerian
Fig. 12. Predicted and experimental (Lang and Gupta, 2010): (a) shock velocity versus particle velocity, normalized by linear elastic wave speed C0 and
(b) Hugoniot stress, normalized by longitudinal second-order elastic constant C11.

Table 5
Thermodynamic predictions.

Material Shock direction V=V0 θ=θ0 θ=θ0 η=cS0 η=cS0 P=Pη P=Pη

Lagrangian Eulerian Lagrangian Eulerian Lagrangian Eulerian

Quartz X 0.96 1.028 1.028 0.002 0.002 1.0002 1.0002
0.92 1.055 1.052 0.030 0.050 1.0013 1.0024
0.88 1.079 1.069 0.133 0.418 1.0032 1.0039

Y 0.96 1.028 1.028 0.003 0.002 1.0002 1.0002
0.92 1.055 1.052 0.036 0.039 1.0016 1.0019
0.88 1.079 1.069 0.153 0.300 1.0036 1.0079

Z 0.96 1.022 1.022 0.007 0.006 1.0004 1.0004
0.92 1.043 1.041 0.066 0.071 1.0017 1.0017
0.88 1.062 1.054 0.246 0.373 1.0033 1.0042

Sapphire X 0.96 1.049 1.049 0.016 0.015 1.0008 1.0007
0.92 1.095 1.091 0.141 0.135 1.0028 1.0024
0.88 1.137 1.119 0.483 0.531 1.0053 1.0055

Z 0.96 1.050 1.049 0.014 0.012 1.0007 1.0006
0.92 1.095 1.091 0.122 0.121 1.0025 1.0024
0.88 1.137 1.120 0.430 0.578 1.0049 1.0071

Diamond X 0.96 1.031 1.031 0.033 0.042 1.0003 1.0003
0.92 1.060 1.057 0.255 0.311 1.0009 1.0010
0.88 1.086 1.075 0.811 0.987 1.0017 1.0024
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theory better represents experimental shock velocities, with Lagrangian theory yielding too-low values of D. For both
clusters of experimental shock velocity data, 3rd order Eulerian theory provides a better fit than 3rd order Lagrangian
theory. As shown in Fig. 12(b), all 4th order and all 3rd order models provide a reasonable prediction of longitudinal
shock stress, though 3rd order Lagrangian theory might be considered overly compliant for V=V0o0:95. Second-order
elastic models do not accurately predict Hugoniot stress, with 2nd order Eulerian theory too stiff and 2nd order
Lagrangian theory too compliant.

Considering key findings reported in Section 3.5 and that quartz, sapphire, and diamond all have B′
0≥4, the lack of

definitively greater accuracy of Eulerian theory relative to Lagrangian theory is somewhat unexpected. However, quartz and
sapphire are not cubic and have directionally dependent covalent and ionic bonding, so trends from the ideal model of
Section 3 that enforces Cauchy relations and isotropic symmetry for third-order constants may not apply. Diamond has
strong covalent bonding (unlike the noble metals for which anharmonic properties are more symmetric, Hiki and Granato,
1966), and examination of all third-order constants in Nielsen (1986) shows that (3.13) and (3.16) are not well respected.
Nielsen (1986) reported that 4th order Eulerian theory was better able than Lagrangian theory to collectively fit atomic
simulation results for spherical deformation and straining along [100], [110], and [111] in diamond.

Predictions of fourth-order Lagrangian and Eulerian theories for temperature rise θ (normalized by reference
temperature θ0), entropy jump across the shock η (normalized by specific heat at constant pressure c0S ), and Hugoniot
stress P (normalized by uniaxial isentropic stress Pη) are listed in Table 5. Isentropes are computed as

Pη ¼ −JðC11E þ 1
2 C111E

2 þ 1
6C1111E

3Þ; ðLagrangianÞ ð4:60Þ

Pη ¼ −J−3ðC11Dþ 1
2 Ĉ111D

2 þ 1
6Ĉ1111D

3Þ: ðEulerianÞ ð4:61Þ

Predicted temperatures are similar for Lagrangian and Eulerian theories, with temperature rise slightly smaller in the latter
at large compression. Predicted entropy production is positive in agreement with (4.9) and is of the same order of
magnitude among theories, with larger η predicted by Eulerian theory at large compression. Recall from Section 4.1 that the
present analytical solutions have assumed a simple form of specific heat wherein the contribution to internal energy from
entropy is linear, i.e., (4.31) and (4.43). When higher-order Grüneisen parameter Γ′1 ¼ 0 and c0≈cS0, these approximations are
most accurate for η⪡2cS0. From Table 5, such conditions hold for V=V0≥0:92. But for very large compression (i.e.,
V=V0 ¼ 0:88), entropy production (especially in diamond) is large enough that a higher-order representation of entropy,
e.g., (4.21) or (4.22), may be prudent. Examination of stresses in Table 5 shows that P=Pηo1:01 in all cases, justifying
isentropic assumptions used in previous stress analyses (Fowles, 1967; Clayton, 2009).

Upon examination of HEL stresses in Table 4, results in Table 5 are deemed valid for Z-cut quartz to V=V0 ¼ 0:88.
However, for X- and Y-cut quartz and for diamond, the HEL is exceeded at V=V0 ¼ 0:88, and results are most valid only for
V=V0≥0:92. For sapphire, the elastic range is even smaller and compression, in experiments, is elastic only for V=V0 ¼ 0:96.
Values listed in Table 5 can be considered extrapolations when compression exceeds the HEL. Above the HEL, a nonlinear
theory incorporating dislocation slip/twinning (Clayton, 2009, 2010b; Clayton and Knap, 2011a, 2011b) and cleavage fracture
(Clayton, 2006, 2010a, 2011b) may be needed, accounting for anisotropic inelastic deformation mechanisms and their
contributions to entropy production and temperature. If large densities of lattice defects are generated at shock pressures at
or above the HEL, consideration of their effects on dilatation (Clayton, 2009, 2011a; Clayton and Bammann, 2009) and
tangent elastic moduli (Clayton and Chung, 2006) may be worthwhile.
4.4. An alternative lower-order theory

Purely Lagrangian and Eulerian theories have been formulated using respective strain measures E and D. These tensors
are not the only possibilities for use in thermoelastic potentials. For example, a generic symmetric strain, in material
coordinates, that vanishes when F ¼ 1, can be defined as a linear combination of E and D:

G¼ ð1−χÞE þ χD; 0≤χ≤1: ð4:62Þ
Lagrangian (Eulerian) theory is recovered when χ ¼ 0 (χ ¼ 1). In what follows, take χ ¼ 1

2, giving
5

G¼ 1
2 ðE þ DÞ ¼ 1

4 ðFTF−F−1F−TÞ ¼ 1
4ðU2−U−2Þ; ð4:63Þ

where U ¼ RTF is the right stretch tensor. Free and internal energy densities per unit reference volume are

Ψ ¼ ~Ψ ðG; θÞ; U ¼ ~U ðG; ηÞ: ð4:64Þ
Thermodynamic stress, entropy, and temperature obey

~S ¼ ∂ ~Ψ =∂G¼ ∂ ~U=∂G¼ ~S
T
; η¼ −∂ ~Ψ =∂θ; θ¼ ∂ ~U=∂η: ð4:65Þ
5 The author is grateful to M. Ortiz for suggesting, before calculations in the present work were undertaken, the possible utility of a strain such as
(4.63).
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Components of first Piola–Kirchhoff stress are obtained from chain rule differentiation:

PkL ¼
∂ ~U
∂FkL

¼ ∂ ~U
∂GIJ

∂GIJ

∂FkL
¼ 1

2
~SIJðδJLFkI þ F−1Ik F−1Jm F−1LmÞ; ð4:66Þ

where ~U can also be replaced with ~Ψ . Isentropic second-order elastic moduli are defined, in Voigt notation, as

~C
η

αβ ¼ ∂2 ~U=∂Gα∂Gβ: ð4:67Þ

A complete three-dimensional thermomechanical theory of nonlinear elasticity can be formulated in terms of G
paralleling steps taken in Section 2. For modeling 1-D shock compression, a scalar theory along the lines of those in terms of
E and D in Section 4.1 is sufficient. For compression parallel to the X ¼ X1 direction, scalar uniaxial strain is

G¼ G11 ¼ 1
2 ðE11 þ D11Þ ¼ 1

4 ðF2−F−2Þ ¼ 1
4J

−2ðJ4−1Þ: ð4:68Þ

For the present purpose, the following lower-order thermodynamic potentials suffice:

~U ¼ 1
2 C11G

2 þ θ0η; ~Ψ ¼ 1
2C11G

2: ð4:69Þ

In this representation, temperature is constant, thermoelastic coupling is omitted, and isothermal and isentropic second-
order elastic constants are indistinguishable and are both represented by C11. Following the same arguments used to arrive
at (B.3), this second-order elastic constant can be considered equivalent to second-order constants of Lagrangian and
Eulerian theories of Section 4.1. Hugoniot stress P is equivalent to the second-order elastic isentrope, and is calculated using
(4.66) and (4.68) as

P ¼−P11 ¼−1
2 ðF þ F−3Þ ~S ¼−1

2 J
−3ð1þ J4Þ∂ ~U=∂G¼ −1

2 J
−3ð1þ J4ÞGC11 ¼ 1

8J
−5ð1þ J4Þð1−J4ÞC11: ð4:70Þ

This relation has the physically appealing feature that jPj-∞ as J-0;∞.
Predictions of (4.70) are labeled “2nd order mixed” in Figs. 9, 11, and 12. Hugoniot stresses predicted using this mixed

Eulerian–Lagrangian theory are more accurate than those predicted using purely Eulerian or Lagrangian 3rd order models
for X- and Y-cut quartz [Fig. 9(a) and (b)] and X- and Z-cut sapphire [Fig. 11(a) and (b)], and for these crystals and
orientations are of comparable accuracy as 4th order theory. Predictions from (4.70) are of comparable accuracy as those of
3rd order Eulerian or Lagrangian approaches for Z-cut quartz and diamond [Figs. 9(c) and 12], but in these two cases are less
accurate than 4th order theory. The apparent success of (4.70) is not surprising considering that 2nd order Eulerian and
Lagrangian models tend to respectively over- and under-predict experimental Hugoniot stress data. As noted previously, for
many, if not most, kinds of single crystals only second-order elastic constants have been measured, with third- and higher-
order constants unknown. These findings suggest that, for a single crystal ceramic or mineral undergoing finite elastic
compression, a best estimate of Hugoniot stress might be obtained using one-parameter equation (4.70) if only second-
order constant C11 is available.

5. Conclusions

A comprehensive theory of Eulerian thermoelasticity has been formulated and compared with traditional Lagrangian
theory. Analytical solutions have been compared for homogeneous spherical deformation, uniaxial strain, and simple shear,
for cubic crystals with fully anisotropic linear properties (three independent second-order elastic constants) but
directionally independent anharmonicity (one independent third-order constant). For a typical value of pressure derivative
of the bulk modulus of four, Eulerian solutions tend to demonstrate more physically realistic behavior (i.e., rapidly
increasing stress and energy at very large deformation) and greater stability (e.g., positive strain energy to very large
deformation).

An analytical solution, accurate to fifth order in strain, has been derived for the uniaxial shock response in Eulerian
thermoelasticity, paralleling a derivation for Lagrangian theory. Entropy production across the shock is minimally third
order in strain for either theory. Both Eulerian and Lagrangian treatments provide sufficient accuracy when fourth-order
elastic constants are incorporated, with neither theory demonstrating consistent or definitive advantages over the other in
describing Hugoniot data for quartz, sapphire, or diamond. A second-order model incorporating a mixed strain tensor that is
an average of Lagrangian and Eulerian strains has been shown to provide a reasonable approximation of the Hugoniot stress
for each of these materials. This strain measure is recommended for predicting the uniaxial shock response of other hard
anisotropic crystalline materials if higher-order elastic constants are unknown.

Appendix A. Kinematics

Let x and X denote spatial and initial material coordinates of an element of a solid body, related by sufficiently smooth,
and one-to-one at any time t≥0, functions

x¼ xðX; tÞ; X ¼ Xðx; tÞ: ðA:1Þ
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The deformation gradient FðX; tÞ is
F ¼∇0x; FiJ ¼ ∂xi=∂XJ ¼ ∂Jxi: ðA:2Þ

The inverse deformation gradient F−1ðx; tÞ is
F−1 ¼∇X; F−1Ij ¼ ∂XI=∂xj ¼ ∂jXI : ðA:3Þ

Partial coordinate differentiation at fixed t obeys ∂Jð � Þ ¼ FiJ∂ið � Þ. The following identities (Clayton, 2011a) that follow from
FF−1 ¼ 1 and ∇0F ¼∇0∇0x are used later:

∂F−1Ij =∂FkL ¼ −F−1Ik F−1Lj ; ∂KFiJ ¼ ∂JFiK : ðA:4Þ
Current volume V and mass density ρ are related to initial volume V0 and initial density ρ0 of a material element by Jacobian
determinant JðX; tÞ:

V
V0

¼ ρ0
ρ

¼ J ¼ det F: ðA:5Þ

Lagrangian Green strain EðX; tÞ is defined as

E¼ 1
2 ðFTF−1Þ; EIJ ¼ 1

2ð∂Ixk∂Jxk−δIJÞ: ðA:6Þ
Letting uðX; tÞ denote displacement and uJ ¼ uiδiJ ,

∇0u¼ F−1; ∂Juk ¼ FkJ−δkJ ; EIJ ¼ 1
2ð∂IuJ þ ∂JuI þ ∂Iuk∂JukÞ: ðA:7Þ

The following identities apply (Clayton, 2011a):

∂EIJ
∂FkL

¼ 1
2
ðδLIFkJ þ δLJFkIÞ;

∂J
∂FkL

¼ JF−1Lk ;
∂J
∂EIJ

¼ JF−1Ik F−1Jk : ðA:8Þ

Eulerian strain Dðx; tÞ is defined as

D¼ 1
2 ð1−F−1F−TÞ; DIJ ¼ 1

2ðδIJ−∂kXI∂kXJÞ: ðA:9Þ
Letting uðx; tÞ denote displacement,

∇u¼ 1−F−1; ∂juK ¼ δjK−∂jXK ; DIJ ¼ 1
2ð∂iuj þ ∂jui−∂kui∂kujÞδiIδjJ : ðA:10Þ

Comparing (A.7) and (A.10), and noting that

∂Juk ¼ ∂iukðδiJ þ ∂JuiÞ ¼ ∂iukδiJ þ Oð∥∇u∥2Þ; ðA:11Þ
it follows that E and D agree to first order in displacement gradients:

D¼ E þ oð∥∇u∥Þ: ðA:12Þ
From (A.4) and identity ∂ det A=∂Aij ¼ A−1

ji det A,

∂DIJ

∂FkL
¼ 1

2
F−1LmðF−1Ik F−1Jm þ F−1Jk F−1Im Þ; ∂J

∂DIJ
¼ JFkIFkJ : ðA:13Þ

From definitions (A.6) and (A.9), for ∥E∥o1 and ∥D∥o1, the following series apply:

D¼ 1
2 ½1−ð1þ 2EÞ−1� ¼ 1

2½1−ð1−2E þ 4E2−8E3 þ⋯Þ� ¼ E−2E2 þ 4E3−⋯; ðA:14Þ

E¼ 1
2 ½ð1−2DÞ−1−1� ¼ 1

2½ð1þ 2Dþ 4D2 þ 8D3 þ⋯Þ−1� ¼Dþ 2D2 þ 4D3 þ⋯: ðA:15Þ
Consider the polar decomposition of F:

F ¼ RU ¼VR; RRT ¼ 1; U ¼UT; V ¼VT: ðA:16Þ
Define the Eulerian Almansi strain eðx; tÞ by

e¼ 1
2 ð1−F−TF−1Þ; eij ¼ 1

2 ðδij−∂iXK∂jXK Þ ¼ 1
2ð∂iuj þ ∂jui−∂iuk∂jukÞ: ðA:17Þ

When there is no rotation, F ¼ FT, ∂iXJ ¼ ∂kXLδkJδiL, and ∂kuj ¼ ∂juk, leading to e¼D under these conditions. From the polar
decomposition (A.16), strain tensors can be expressed in terms of stretches as

E¼ 1
2 ðU2−1Þ; D¼ 1

2 ð1−U−2Þ; e¼ 1
2ð1−V−2Þ: ðA:18Þ

Spatial velocity gradient lðx; tÞ and its symmetric part dðx; tÞ are
l¼∇υ¼ _FF−1; d¼ 1

2 ðl þ lTÞ; lij ¼ ∂jυi ¼ ∂j _xi; dij ¼ 1
2ð∂i _xj þ ∂j _xiÞ: ðA:19Þ

It follows that

_E ¼ FTdF; _D ¼ F−1dF−T: ðA:20Þ
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Of particular interest are situations in which deformation is spherical (isotropic):

F ¼ J1=31; F−1 ¼ J−1=31; E¼ 1
2 ðJ2=3−1Þ1; D¼ 1

2ð1−J−2=3Þ1: ðA:21Þ
In this case, the following limits apply as J ¼ V=V0-0, where ∥A∥¼ ðA : AÞ1=2:

lim
J-0

∥E∥¼
ffiffiffi
3

p
=2; lim

J-0
∥D∥-∞: ðA:22Þ

Appendix B. Thermomechanical derivations

Material coefficients defined as derivatives of free or internal energy with respect to E are related to those with respect to
D as follows. First, consider thermal stress coefficients. Setting FiJ ¼ F−1Ji ¼ δiJ in the reference state, (2.27) yields

β0α ¼ β̂0α; β′0α ¼ ð∂βα=∂θÞj0 ¼ ð∂β̂α=∂θÞj0 ¼ β̂′0α: ðB:1Þ
Recalling that c ¼ ĉ, or using (2.36), it follows that Grüneisen parameters

Γ0α ¼ β0α=c0 ¼ β̂0α=c0 ¼ Γ̂0α; Γ ′0α ¼ ð∂Γα=∂ηÞj0 ¼ ð∂Γ̂α=∂ηÞj0 ¼ Γ̂ ′0α: ðB:2Þ
Now consider second-order elastic stiffness coefficients. From (2.52), noting also that P ¼ 0 in the reference state,

C
θ
0αβ ¼ Ĉ

θ

0αβ; C
η
0αβ ¼ Ĉ

η

0αβ : ðB:3Þ
It follows that for higher-order thermal stress coefficients β0αβ2β0IJKL,

β̂0IJKL−β0IJKL ¼−ð∂Ĉθ

IJKL=∂θÞj0 þ ð∂Cθ
IJKL=∂θÞj0 ¼ β0IKδJL þ β0JKδIL þ β0ILδJK þ β0JLδIK : ðB:4Þ

Similarly, for higher-order Grüneisen parameters Γ0αβ2Γ0IJKL,

Γ̂0IJKL−Γ0IJKL ¼−θ−10 ð∂Ĉη

IJKL=∂θÞj0 þ θ−10 ð∂Cη
IJKL=∂θÞj0 ¼ Γ0IKδJL þ Γ0JKδIL þ Γ0ILδJK þ Γ0JLδIK : ðB:5Þ

Note that by definition, Γ0αβ ¼ ½∂ðβα=cÞ=∂Eβ�j0, and that Γαβ≠βαβ=c in general, since c may depend on E when β′α≠0. A similar
statement applies for Γ̂0αβ . Finally consider third-order elastic coefficients. Differentiating (2.50) with respect to F gives
(Clayton, 2011a; Clayton and Bammann, 2009)

AiJkLmN ¼ ∂3W
∂FiJ∂FkL∂FmN

¼ ∂2PiJ

∂FmN∂FkL
¼ ∂AiJkL

∂FmN
¼ ∂

∂FmN
ðFiNFkMCNJML þ δikSJLÞ

¼ FiIFkKFmMC IJKLMN þ δimFkKCJNKL þ δkmFiIC IJNL þ δikFmMCJLMN

¼ FiIFkKFmMC IJKLMN þ δimF
−1
Jq AqNkL þ δkmF

−1
NqAiJqL þ δikF

−1
Jn AmNnL−ðδimF−1Jk F−1NqPqL þ δkmF

−1
Ni F

−1
Jq PqL þ δikF

−1
Jm F−1NqPqLÞ:

ðB:6Þ
Differentiating (2.51) with respect to F gives

AiJkLmN ¼ ∂
∂FmN

ðF−1Pi F−1Rk F−1Jr F−1Qr F
−1
Lt F

−1
St ĈPQRS−F−1Jk PiL−F

−1
Li PkJ−F

−1
Jm F−1LmFkNPiNÞ

¼ F−1Pi F
−1
Rk F

−1
UmF

−1
Jr F−1Qr F

−1
Lt F

−1
St F

−1
NwF

−1
VwĈPQRSUV−ðF−1PmF−1Ni F−1Rk F−1Jr F−1Qr F

−1
Lt F

−1
St ĈPQRS þ F−1RmF

−1
NkF

−1
Pi F

−1
Jr F−1Qr F

−1
Lt F

−1
St ĈPQRS

þF−1Jm F−1Nr F
−1
Pi F

−1
Rk F

−1
Qr F

−1
Lt F

−1
St ĈPQRS þ F−1QmF

−1
Nr F

−1
Pi F

−1
Rk F

−1
Jr F−1Lt F

−1
St ĈPQRS

þF−1LmF
−1
Nt F

−1
Pi F

−1
Rk F

−1
Jr F−1Qr F

−1
St ĈPQRS þ F−1SmF

−1
Nt F

−1
Pi F

−1
Rk F

−1
Jr F−1Qr F

−1
Lt ĈPQRSÞ

−ðF−1Jk AiLmN þ F−1Li AkJmN þ F−1Jq F−1Lq FkPAiPmN þ δmkF
−1
Jq F−1Lq PiNÞ

þF−1Jm F−1NkPiL þ F−1LmF
−1
Ni PkJ þ F−1JmF−1NqF

−1
Lq FkPPiP þ F−1LmF

−1
NqF

−1
Jq FkPPiP : ðB:7Þ

Equating (B.6) and (B.7) produces a relationship between third-order tangent elastic coefficients at any deformation:

CIJKLMN ¼ F−1Ii F−1Pi F
−1
Jj F−1Qj F

−1
Kk F

−1
Rk F

−1
Ll F

−1
Sl F

−1
MmF

−1
TmF

−1
NnF

−1
UnĈPQRSTU

−ðF−1Ii F−1Ni F
−1
Kk F

−1
Rk F

−1
MmF

−1
PmF

−1
Jr F−1Qr F

−1
Lt F

−1
St ĈPQRS þ F−1Ii F−1Pi F

−1
Kk F

−1
NkF

−1
MmF

−1
RmF

−1
Jr F−1Qr F

−1
Lt F

−1
St ĈPQRS

þF−1Ii F−1Pi F
−1
Kk F

−1
Rk F

−1
MmF

−1
JmF−1Nr F

−1
Qr F

−1
Lt F

−1
St ĈPQRS þ F−1Ii F−1Pi F

−1
Kk F

−1
Rk F

−1
MmF

−1
QmF

−1
Nr F

−1
Jr F−1Lt F

−1
St ĈPQRS

þF−1Ii F−1Pi F
−1
Kk F

−1
Rk F

−1
MmF

−1
LmF

−1
Nt F

−1
St F

−1
Jr F−1Qr ĈPQRS þ F−1Ii F−1Pi F

−1
Kk F

−1
Rk F

−1
MmF

−1
SmF

−1
Nt F

−1
Lt F

−1
Jr F−1Qr ĈPQRSÞ

−ðF−1Jk F−1Kk F
−1
Ii F−1MmAiLmN þ F−1Ii F−1Li F

−1
Kk F

−1
MmAkJmN þ F−1Jq F−1Lq F

−1
Ii F−1MmAiKmN

þF−1Ii F−1MiF
−1
Kk F

−1
Jq AqNkL þ F−1MkF

−1
Kk F

−1
Ii F−1NqAiJqL þ F−1Ii F−1Ki F

−1
Jq F−1MmAmNqLÞ

þF−1Ii F−1MiF
−1
Jk F−1Kk F

−1
NqPqL þ F−1Ii F−1Ni F

−1
KmF

−1
MmF

−1
Jq PqL þ F−1Ik F−1Kk F

−1
Jm F−1MmF

−1
NqPqL

þF−1Jm F−1MmF
−1
Kk F

−1
NkF

−1
Ii PiL þ F−1Ii F−1Ni F

−1
LmF

−1
MmF

−1
Kk PkJ þ F−1JmF−1LmF

−1
Lq F

−1
NqF

−1
Ii PiK

þF−1Jq F−1NqF
−1
LmF

−1
MmF

−1
Ii PiK−F−1Jq F−1Lq F

−1
Kk F

−1
MkF

−1
Ii PiN : ðB:8Þ
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This equation applies analogously for either isothermal (C
θ
IJKLMN ; Ĉ

θ

IJKLMN) or isentropic (C
η
IJKLMN ; Ĉ

η

IJKLMN) coefficients. In the
undeformed stress free reference state, using (2.50) and (B.3), (B.8) yields the following relationship between third-order
isothermal elastic constants:

Ĉ
θ

0IJKLMN ¼C
θ
0IJKLMN þ δIKC

θ
0JLMN þ δILC

θ
0JKMN þ δIMC

θ
0KLJN þ δINC

θ
0KLJM

þδJKC
θ
0ILMN þ δJMC

θ
0INKL þ δJLC

θ
0IKMN þ δJNC

θ
0IMKL þ δKMC

θ
0IJLN þ δKNC

θ
0IJLM þ δLMC

θ
0IJKN þ δLNC

θ
0IJKM : ðB:9Þ

Similarly, for isentropic constants,

Ĉ
η

0IJKLMN ¼C
η
0IJKLMN þ δIKC

η
0JLMN þ δILC

η
0JKMN þ δIMC

η
0KLJN þ δINC

η
0KLJM

þδJKC
η
0ILMN þ δJMC

η
0INKL þ δJLC

η
0IKMN þ δJNC

η
0IMKL þ δKMC

η
0IJLN þ δKNC

η
0IJLM þ δLMC

η
0IJKN þ δLNC

η
0IJKM : ðB:10Þ

These derivations–which effectively equate strain energies to third order in Taylor series with respect to F–lead to relations
among third-order elastic coefficients equivalent to those derived elsewhere (Weaver, 1976; Perrin and Delannoy, 1978) by
applying series approximations [e.g., (A.14)] and equating coefficients of like terms in Lagrangian and Eulerian energy
potentials.
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